0% Complete
فارسی
Home
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
Authors :
Seyedeh Niusha Motevallian
1
Seyed Mohammad Hossein Hasheminejad
2
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
Keywords :
Recommender Systems, Cold Start, Graph Neural Network, GraphSAGE, Clustering
Abstract :
With the growing volume of information being expanded by product and service providers, recommender systems have become a tool to prevent information overload. One of the most popular types of recommender systems is collaborative filtering. The issue of user cold start is the main challenge in this approach. Cold start means the lack of information to predict ratings of a user accurately. Because the user's prior experiences in the system are essential in trusting the recommendations, making the proper recommendations is very important in the early stages of interaction. In this paper, the aim is to solve the problem of partial user cold start by gathering the information of the trust network and users ratings. In this approach, the trust network information and user ratings are first aggregated by the GraphSAGE neural network algorithm to extract the user's hidden features vector. Then, user ratings are predicted in each cluster of users. This method, which has been evaluated on two data sets, in the best case, improves the accuracy of predicting non-existing ratings for partially cold start users in terms of mean absolute error by 0.9% and root mean squared error by 1.1% compared to previous methods. Also, due to the inductivity of the GraphSAGE algorithm, if a new user (a user who was not available in the data set during the training process) enters, there is no need to retrain the model, and its embedding vector is created with the existing model.
Papers List
List of archived papers
Target-driven Navigation of a Mobile Robot using an End-to-end Deep Learning Approach
Mohammad Matin Hosni - Ali Kheiri - Esmaeil Najafi
Simulanteus Load Balancing of Servers and Controllers in SDN-based IoMT
Somaye Imanpour - Ahmadreza Montazerolghaem - Saeed Afahari
Distributed Learning Automata-based Algorithm for Finding K-Clique in Complex Social Networks
Mohammad Mehdi Daliri Khomami - Alireza Rezvanian - Ali Mohammad Saghiri - Mohammad Reza Meybodi
جمعآوری، تحلیل و خلاصه سازی نظرات کاربران فارسی زبان در شبکههای اجتماعی پیرامون بیماری فراگیر کووید-19
محمدرضا شمس - محمد یاسین فخار محمدرضا شمس - محمد یاسین فخار -
A Community-Based Method for Identifying Influential Nodes using Network Embedding
Nargess Vafaei - Dr Mohammad Reza Keyvanpour
Conceptual Intelligent Model for Visual Question Answering using Attention Mechanism and Relational Reasoning
ٍElham Alighardash - Dr Hassan Khotanlou - Vahid Pour Amin
Short-Term Traffic Flow Prediction Based on a Recurrent Deep Neural Networks: Study in Tehran
Dr Monireh عبدوس - Taha Vajed Samei
Improving Drug-Target Interaction Prediction Using Enhanced Feature Selection
Maryam Taheri - Mohammad Reza Keyvanpour - Mohadeseh Saadat Mousavi
تاثیر مدیریت دانش مشتری بر توسعه محصول جدید و نوآورانه با رویکرد مدل سازی معادلات ساختاری با استفاده از حداقل مربعات جزئی: مطالعۀ موردی شرکت کاله
دکتر آرش خسروی - سیده فاطمه حسینی - دکتر مرتضی رجب زاده آرش خسروی - سیده فاطمه حسینی - مرتضی رجب زاده -
AOV-IDS: Arithmetic Optimizer with Voting classifier for Intrusion Detection System
Amir Soltany Mahboob - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
more
Samin Hamayesh - Version 42.0.3