0% Complete
فارسی
Home
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Epileptic Seizure Detection based on Statistical and Wavelet Features and Siamese Network
Authors :
Zahra Hossein-Nejad
1
Mehdi Nasri
2
1- دانشگاه آزاد اسلامی واحد سیرجان
2- دانشگاه آزاد اسلامی واحد خمینی شهر
Keywords :
Diagnosis of Epilepsy،Electroencephalogram signal،Feature selection،Siamese Network
Abstract :
Epilepsy can be defined, according to the World Health Organization, as recurrent seizures related to physical reactions caused by a sudden discharge of electricity to a group of human brain cells. Electroencephalogram (EEG) signals play a very important role in the diagnosis of this disease. The recording of EEG signals recorded by mobile recording devices produces very long information that the detection of the epileptic area requires a long time for the expert to analyze all the information. Traditional methods of analysis are tedious, which is why in recent years there have been so many automated systems for diagnosing epilepsy. In this article, a new approach to the diagnosis of epilepsy is presented. First, the preprocessing process is applied to the EEG signals and the signal is decomposed into ten sub-signals using an experimental wavelet transform. Then, the best features are selected using the proposed method of analysis of variance. Then, using the Siamese network to reduce the dimensions of the feature vector in improving the performance of seizure detection. Finally, the support vector machine (SVM) algorithm uses these features to classify convulsive and non-convulsive EEG signals. The simulation results show that the proposed method of the paper using the EEG signal dataset of the University of Bonn has resulted in 99.30 accuracy and this method can effectively help physicians in diagnosing epilepsy, thus reducing their workload.
Papers List
List of archived papers
Simulanteus Load Balancing of Servers and Controllers in SDN-based IoMT
Somaye Imanpour - Ahmadreza Montazerolghaem - Saeed Afahari
ISPREC: Integrated Scientific Paper Recommendation using heterogeneous information network
Elaheh Jafari - Dr Bita Shams - Dr Saman Haratizadeh
یک رویکرد سریع تحلیل و شناسایی آسیب پذیری Next-Intent در برنامه های کاربردی اندروید
زهرا کلوندی - دکتر مهدی سخائی نیا زهرا کلوندی - مهدی سخائی نیا -
A Model-Driven Approach for Automatic Generation of Android Tourism Applications
Sara Adib - Bahman Zamani
روشی برای تشخیص مرحله پیشرفت آلزایمر در تصاویرFMRI مبتنی بر شبکه های عصبی چگال
فرساد زمانی بروجنی - عباس بهره دار
A Graph Attention-Based Autoencoder for Critical Path Anomaly Detection in Microservices
Mahdi Naderi - Hossein Momeni - Shayan Shahini
A Hybrid Crow Search and Penguin Optimization Algorithm (CPMM) for Efficient Cloud Workflow Scheduling
Reza Akraminejad - Farhad Kazemipour - Mozhdeh Koreh Davoodi
تشخیص مراحل خواب با کمک جنگل تصادفی و ویژگی های فرکانسی استخراج شده از سیگنال های EEG و EOG
سیدعلی حسینی
Distributed Learning Automata-based Algorithm for Finding K-Clique in Complex Social Networks
Mohammad Mehdi Daliri Khomami - Alireza Rezvanian - Ali Mohammad Saghiri - Mohammad Reza Meybodi
چارچوب پیشبینی خرابی تطبیقی مبتنی بر شبکه عصبی گراف پویا و GRU در سامانههای صنعتی IIoT
رسول اسماعیلی فرد - لیلا رنجبر
more
Samin Hamayesh - Version 42.5.2