0% Complete
فارسی
Home
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Classification of mental states of human concentration based on EEG signal
Authors :
Mehran Safari Dehnavi
1
Vahid Safari Dehnavi
2
Masoud Shafiee
3
1- دانشگاه آزاد اسلامی واحد نجف آباد
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
Keywords :
EEG signal, machine learning methods, classification.
Abstract :
This paper provides a suitable method for classifying the EEG signal. In this article, a number of features are extracted from the EEG signal and by using these different features and networks, these signals are classified into three categories: relaxation, moderate concentration and high concentration. In this case, based on the amount of mental activity that has a direct effect on the EEG signal, the state of attention can be categorized. In this paper, four sensors (electrodes) are used to collect the voltage of the brain signals, then the Large Laplacian Filter is used to localize the signals, and by this method, the signals of the four sensors are converted into one signal, then the frequency of 50 Hz (City frequency) is removed using a Notch passive filter and then a wavelet filter is used to remove noise and artifacts. In this article, the diagnosis of mental states in the time domain is examined. Then, a window is determined on the measured signal and in these windows, various features are extracted and by using these features and machine learning methods, different mental states are categorized. Finally, the method used is tested on the data set and the results of the method is checked. One of the advantages of the proposed method is to reduce the number of network inputs based on PCA feature reduction method, which leads to a reduction in network volume, which is especially important in neural networks. In this article, we have tried to increase the accuracy of classification by using various features.
Papers List
List of archived papers
شکلدهی سه بعدی پرتو و بهبود نرخ امن در شبکههای مخابراتی بیسیم-تواندادهشده مبتنی بر صفحات بازتابی هوشمند
کوثر انصاری - دکتر مهدی مجیدی
PersianRAG A Retrieval Augmented Generation System for Persian Language
Hossein Hosseini - Mohammad Sobhan Zare - Amir Hossein Mohammadi - Arefeh Kazemi - Zahra Zojaji - Mohammad Ali Nematbakhsh
بهبود عنواننگاری تصویر با استفاده از روشهای یادگیری عمیق
مهدی صیادجو - محمدجواد فدائی اسلام
Context Awareness Gate for Retrieval Augmented Generation
Mohammad Hassan Heydari - Arshia Hemmat - Erfan Naman - Afsaneh Fatemi
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
کشف لبه در تصاویر پزشکی با استفاده از اتوماتای سلولی سلسله مراتبی
مریم علینقی زاده - علیرضا رضوانیان
Leveraging Retrieval-Augmented Generation for Persian University Knowledge Retrieval
Arshia Hemmat - Mohammad Hassan Heydari - Kianoosh Vadaei - Afsaneh Fatemi
Using Deconvolutional Variational Autoencoder for Answer Selection in Community Question Answering
Golshan Afzali Boroujeni - Heshaam Faili
PeCoQ: A Dataset for Persian Complex Question Answering over Knowledge Graph
Romina Etezadi - Mehrnoush Shamsfard
Business Process Improvement Challenges: A Systematic Literature Review
Hanieh Kashfi - Fereidoon Shams Aliee
more
Samin Hamayesh - Version 41.3.1