0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Intra Class Feature Learning and Supervised Triplet Sampling for Deep Metric Learning
Authors :
Hamideh Rafiee
1
Ahmad Ali Abin
2
Seyed Soroush Majd
3
Viet-Vu Vu
4
1- shahid beheshti university
2- shahid beheshti university
3- shahid beheshti university
4- CMC University
Keywords :
deep metric learning،zero-shot learning،similarity learning
Abstract :
Deep metric learning (DML) aims to learn an embedding space where semantically similar samples are mapped close together while dissimilar ones are placed farther apart. Although effective on seen classes, most DML approaches mainly emphasize inter-class separation during training and consequently struggle to generalize to unseen classes during inference. To address this limitation, we propose a method that improves generalization by learning fine-grained intra-class features and employing a supervised triplet sampling strategy. The first component, fine-grained feature learning, prevents over-compression in the embedding space by capturing structural relationships among samples within the same class, allowing the model to represent subtle intra-class variations alongside class-discriminative features. The second component, supervised triplet sampling, selects informative anchor, positive, and negative samples according to a discrimination uncertainty criterion derived from the classifier’s prediction ambiguity, ensuring that challenging examples contribute effectively to the optimization process. Experiments conducted on the Cars196 dataset demonstrate that the proposed approach achieves notable improvements in both clustering and retrieval tasks.
Papers List
List of archived papers
A Nano-based High-Speed QCA circuit for Information Security with Image Masking
Saeid Seyedi - Hatam Abdoli
یک رویکرد سریع تحلیل و شناسایی آسیب پذیری Next-Intent در برنامه های کاربردی اندروید
زهرا کلوندی - دکتر مهدی سخائی نیا زهرا کلوندی - مهدی سخائی نیا -
Classification of Personality Traits on Facebook Using Key Phrase Extraction, Language Models and Machine Learning
Faezeh Safari - Abdolah Chalechale
Enhancing Employee Promotion Prediction with a Novel Hybrid Model Integrating Convolutional Neural Networks and Random Forest
Pouya Ardehkhani - Seyyed Reza Moslemi - Hanieh Hooshmand
Improving Privacy Protection in a Collaborative Blockchain-based E-Health Records System
Arman Emam-Hoseini - Samane Sobuti - دکتر سیاوش خرسندی - Alireza Hashemi-Golpayeghani
Ensemble Model Based on an Improved Convolutional Neural Network with a Domain-agnostic Data Augmentation Technique
Faraz Fatahnaie - Armin Azhdehnia - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
Fast Duplicate Bug Reports Detector Training using Sampling for Dimension Reduction
Behzad Soleimani Neysiani - Saeed Doostali - Seyed Morteza Babamir - Zahra Aminoroaya
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
Mohammad Bahrami - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti - Sajjad Ansaria
آسیب شناسی استقرار بلاکچین در صنعت بانکی کشور ایران
نیلوفر مرادحاصل
A Model-Driven Approach for Automatic Generation of Android Tourism Applications
Sara Adib - Bahman Zamani
more
Samin Hamayesh - Version 42.5.2