0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
An LLM-Based Approach for Clarifying the Decisions of Vision Models in Autonomous Vehicles
Authors :
Omid Mosalmani
1
Mohammad Javad Rashti
2
Seyed Enayat Alavi
3
1- دانشگاه شهید چمران اهواز
2- دانشگاه شهید چمران اهواز
3- دانشگاه شهید چمران اهواز
Keywords :
Explainable AI،Prompt Engineering،Large Language Models،Autonomous Vehicles،Textual Explanation
Abstract :
With the increasing utilization of autonomous vehicles, the transparency and explainability of their decisions have become crucial for gaining user trust and enhancing road safety. Current textual explanation methods rely on limited datasets, leading to repetitive and superficial explanations. This research presents a hybrid system where the ADAPT decision-making model is used to predict driving actions, and its attention maps serve as an interface between visual data and the explanation module. Subsequently, large language models, from the Gemini and GPT families, receive the final decision, the attention map, and a carefully designed prompt to generate concise and understandable textual explanations. The primary innovation of this approach lies in combining the decision-making model with LLMs, leveraging their extensive knowledge beyond the constraints of training data to enable the generation of more precise and diverse explanations. The system is evaluated on the BDD-X dataset and measured against standard captioning metrics including BLEU-4, METEOR, ROUGE-L, CIDEr-D, and SPICE. The evaluation results indicate the superiority of explanation outputs in our system, compared to the baseline ADAPT, particularly in multi-reference scenarios, providing more fluent and contextually rich explanations. For instance, the output acquired from Gemini 2.5 Pro model achieves a METEOR score of approximately 19.45, a significant improvement of about 28 percent compared to 15.2 for ADAPT. Furthermore, supplementary experiments show that using a contour representation of the attention map and fine-tuning the models lead to increased visual-textual consistency and result stability. In summary, by linking the visual attention of the decision-making model to the linguistic capabilities of LLMs, this research takes a step toward developing more explainable and trustworthy autonomous vehicles.
Papers List
List of archived papers
Short-Term Traffic Flow Prediction Based on a Recurrent Deep Neural Networks: Study in Tehran
Dr Monireh عبدوس - Taha Vajed Samei
Persian Language Understanding in Task-oriented Dialogue System for Online Shopping
Zeinab Borhanifard - Hossein Basafa - Seyedeh Zahra Razavi - Heshaam Faili
Intent-Based Classification of Multi-Stage Cyber Attacks Using Attacker TTPs and Machine Learning
Fatemeh Imanimehr - Hamed Ebrahimi
تشخیص زودهنگام سندروم داون از روی تصاویر سونوگرافی جنین با استفاده از مدلهای عمیق پیشآموزش دیده
فائزه سادات حسینی نیا - محرم منصوری زاده - حسن ختنلو
شبکههای نرمافزار محور در کلان داده: مطالعهی راهکارهای امنیتی و چالشها
احسان سلیمانی دهکردی - محمدرضا ملاخلیلی میبدی
Advanced SMS Spam Detection using Deep Complex Models and Sine-Cosine Algorithm
Sepehr Rezaei - Mohammadreza Shams - Mohsen Alambardar Meybodi
Improving Fog Computing Scalability in Software Defined Network using Critical Requests Prediction in IoT
Hajar Ghanbari
کاربردهای هوش مصنوعی در خلق ارزش مشترک: بینشهایی از تجربیات نوظهور
فاطمه مقدسی فریدنی - مونا جامیپور - شهناز اکبری امامی
طبقه بندی روش های شناسایی داده های تکراری در جهت تسهیل فرایند پاکسازی داده ها
مهدی جعفری - احمد عبدالله زاده بار فروش
جانمایی توزیعشده محتوا برای ذخیرهسازی موقت در شبکههای سلولی کوچک با حضور کاربران مخرب
زهرا رشیدی - دکتر وصال حکمی - حانیه سلمانطاهری زهرا رشیدی - وصال حکمی - حانیه سلمانطاهری -
more
Samin Hamayesh - Version 42.5.2