0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Robustness Gap in NLP Models for Vulnerability Descriptions: Benchmarking and Data Augmentation
Authors :
AmirHossein Majd
1
Mahdi Yousefikia
2
Saghar Ghasemzadeh
3
Amirreza Asari
4
Arya Khoshnavataher
5
Seyedeh Leili Mirtaheri
6
1- University of Calabria
2- دانشگاه خوارزمی
3- دانشگاه خوارزمی
4- دانشگاه خوارزمی
5- دانشگاه خوارزمی
6- University of Calabria
Keywords :
Software Vulnerabilities،Natural Language Processing،Robustness Benchmark،Noise Injection،Exploitability Prediction،Data Augmentation،Cybersecurity
Abstract :
Software vulnerability descriptions from CVE/NVD are the primary corpus for analysis, prioritization, and risk management in cybersecurity. Yet natural noise (typos, synonym substitutions, lexical variety) and adversarial perturbations undermine the accuracy and trustworthiness of NLP models. This paper presents, to our knowledge, the first systematic benchmark of NLP robustness on vulnerability descriptions. We train nine diverse architectures—lightweight transformers (MiniLM, MPNet, SBERT), hybrid models (BERT-LSTM, TextRCNN), and classical recurrent networks (BiLSTM, LSTM)—on a balanced dataset of over 56,000 real-world records from NVD and Exploit-DB, and fine-tune them for exploitability prediction. For comprehensive evaluation, we inject three noise families into test sets at levels from 10% to 80%: character-level edits (substitutions/swaps), synonym replacements using WordNet, and composite adversarial attacks generated with TextAttack. Performance declines across all models as noise rises, but vulnerability profiles differ: MiniLM attains the strongest clean-data score (F1 ≈ 0.933) yet is most brittle under character noise, whereas TextRCNN, despite a lower baseline, preserves comparatively higher stability in heavily perturbed conditions. Finally, we test a pragmatic hardening strategy—data augmentation with noisy variants followed by retraining—which consistently narrows robustness gaps across architectures without materially sacrificing clean-data accuracy. The benchmark and code enable reproducible evaluation and future robust modeling in cybersecurity.
Papers List
List of archived papers
A Multi-Task Framework Using Mamba for Identity, Age, and Gender Classification from Hand Images
Amirabbas Rezasoltani - Alireza Hosseini - Ramin Toosi - MohammadAli Akhaee
Combinatorial Auction Based on Social Choice in the Internet of Things
Maede Esmaeili - Faria Nassiri-Mofakham - Fatemeh Hassanvand
DART-Net یک معماری ترنسفورمر دو مسیره و مقاوم در برابر حملات تخاصمی برای تشخیص کارآمد و انعطافپذیر هرزنامه
امین هادی - مهدی مصلح - کیوان محبی
Classification of Personality Traits on Facebook Using Key Phrase Extraction, Language Models and Machine Learning
Faezeh Safari - Abdolah Chalechale
Adaptive Semantic Communication for Non-Terrestrial Networks
Soroosh Miri - Sepehr Abolhasani - S. Mohammad Razavizadeh
Detection and Identification of Cyber-Attacks in Cyber-Physical Systems Based on Machine Learning Methods
Zohre Nasiri Zarandi
مکانیابی بهینه آلودگی در شبکههای توزیع آب با استفاده از تکنولوژی اینترنت اشیاء بر مبنای پیشبینی سری زمانی چند متغیره
زینب محزون - امید بوشهریان
IoT-Driven Water Quality Management System using Deep Q-Network
Shakiba Rajabi - Komeil Moghaddasi
روشی برای بهبود آزمون جهش پیشگویانه با در نظر گرفتن اثر داده های از دست رفته
طه رستمی - دکتر سعید جلیلی طه رستمی - سعید جلیلی -
بررسی نقش هوش مصنوعی در بهینهسازی عملکرد و ارتقای مهارتهای منابع انسانی راهآهن: مطالعه موردی راهآهن لرستان
مهدی محمدزاده - علی بهلولی - میثم پرنیان
more
Samin Hamayesh - Version 42.5.2