0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Knowledge Extraction from Technical Reports Based on Large Language Models: An Exploratory Study
Authors :
Parsa Bakhtiari
1
Hassan Bashiri
2
Alireza Khalilipour
3
Masoud Nasiripour
4
Moharram Challenger
5
1- دانشگاه صنعتی همدان
2- دانشگاه صنعتی همدان
3- University of Antwerp
4- دانشگاه صنعتی همدان
5- University of Antwerp
Keywords :
Knowledge Extraction،Large Language Model،Fine Tuning
Abstract :
Organizations and companies possess a vast amount of documents generated over the years. These documents contain valuable information and knowledge that can be instrumental in resolving ambiguities and challenges experts face. Information retrieval and knowledge management systems are tools for extracting documents relevant to users’ informational needs, addressing part of the knowledge extraction challenge from these document collections. With the emergence of generative artificial intelligence and large language models that exhibit strong capa- bilities in understanding textual documents, knowledge extraction solutions have shifted towards utilizing these models. Large language models possess general knowledge obtained from pre- training methods, and there are various approaches to infuse domain-specific knowledge into the general understanding of the language model. This research first examines the possible techniques for fine-tuning a large language model in a specific domain. We then train the model using fine-tuning methods on a collection of documents and technical reports from the industry. Finally, we measure the improvement in the large language model’s capability to extract domain-specific knowledge.
Papers List
List of archived papers
بهبود رهگیری در زنجیره تامین با استفاده از فناوری زنجیره بلوکی
سید عماد موسوی - مهرداد آشتیانی
Combinatorial Auction Based on Social Choice in the Internet of Things
Maede Esmaeili - Faria Nassiri-Mofakham - Fatemeh Hassanvand
An Improved Image Classification Based In Feature Extraction From Convolutional Neural Network: Application To Flower Classification
Faeze Sadati - Dr Behrooz Rezaie
Extending Interaction Flow Modeling Language as a Profile for Form-making Systems
Ghazaleh Shahin - Dr Bahman Zamani
توسعه مدل مفهومی طراحی فرآیند مدیریت بحران سیلاب از طریق بهینه سازی استفاده از دستگاه های اینترنت اشیاء (IoT Devices) در تصمیم گیری
محمود رسولی - سید احسان ملیحی
تحلیل و بررسی تکنیکهای محاسبات تقریبی
محمد میلاد صیاد - محمد رضا بینش مروستی - سید امیر اصغری
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Amirhossein Molazadeh - Zahra Maroufi - Mehrdad Ardebilipour
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
Statistical Disorder Parameters Computing For Hyperspectral Image Anomaly Detection
Dr Maryam Imani
more
Samin Hamayesh - Version 41.3.1