0% Complete
فارسی
Home
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Enhancing QSAR Modeling: A Fusion of Sequential Feature Selection and Support Vector Machine
Authors :
Farzaneh Khajehgili-Mirabadi
1
Mohammad Reza Keyvanpour
2
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
Keywords :
Descriptors selection،Drug discovery،QSAR modeling،Sequential Feature Selection،Support vector machine
Abstract :
Quantitative Structure-Activity Relationship (QSAR) modeling is an approach employed to predict the biological response of chemical compounds by considering their structural attributes. Classification machine learning algorithms can learn patterns and relationships between chemical structure (descriptors) and biological activity from datasets and then use this knowledge to predict active or inactive compounds. This study introduces a new approach that combines Sequential Feature Selection (SFS) with the Support Vector Machine (SVM) algorithm to select the most relevant molecular descriptors for QSAR modeling. SFS and SVM work collaboratively to identify the best subset of descriptors, resulting in improved predictive accuracy. The key steps include selecting an appropriate subset of descriptors using SFS from a larger set, SVM models are built using different subsets of descriptors, and the most accurate model is selected for final use. As shown by measuring Accuracy, Precision, Recall, and F1-score of the proposed SVM algorithm in two datasets, DKPES and PubChem, The results demonstrate the effectiveness and robustness of this approach in achieving subsets of descriptors with strong predictive capabilities.
Papers List
List of archived papers
بهبود کارایی بارسپاری در شبکه های سلولی با استفاده از ارتباطات مشارکتی در لایه MAC
نبیل الراشدی - رسول صادقی - وائل حسین اللامی - مهدی حمیدخانی
An OWA-Powered Dynamic Customer Churn Modeling in the banking industry Based on Customer Behavioral Vectors
Masoud Alizadeh - Mohammad Soleymannejad - Behzad Moshiri
Aspect-Based Sentiment Analysis of After-Sales Service Quality: A Case Study of Snowa and Competitors Using Digikala Reviews
Safiyeh Samadanian - Marjan Kaedi
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
Designing an AI-assisted toolbox for fitness activity recognition based on deep CNN
Ali Bidaran - Dr Saeed Sharifian
Embedded speech encoder for low-resource languages
Alireza A.Tabatabaei - Pouria Sameti - Ali Bohlooli
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Amirhossein Molazadeh - Zahra Maroufi - Mehrdad Ardebilipour
Aligning the Brick and Mortar cosmetic with digital transformation as the right way to overhaul the In-store Experience
Mehrgan Malekpour - Dr Federica Caboni
یک روش کارآمد جهت تشخیص آنلاین حملات DRDoS به سرویس های مبتنی بر UDP درمعماری SDN با استفاده از الگوریتم های یادگیری ماشین
میترا اکبری کهنه شهری - دکتر رضا محمدی - دکتر محمد نصیری میترا اکبری کهنه شهری - رضا محمدی - محمد نصیری -
پیشبینی حجم ترافیک شهری با استفاده از دادههای سرویس نشان مورد مطالعاتی: خیابان کمال اصفهان
مهسا لطیفی - جمشید مالکی
more
Samin Hamayesh - Version 42.5.2