0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A U-Net architecture with graph attention networks to accurately define tooth boundaries
Authors :
Ehsan Akefi
1
Hassan Khotanlou
2
1- دانشگاه بوعلی سینا همدان
2- دانشگاه بوعلی سینا همدان
Keywords :
Image Segmentation،U-Net،Graph Neural Network،Graph Attention Network،Dental Panoramic Radiography
Abstract :
It is very important for clinical diagnosis and treatment planning to be able to accurately segment teeth in panoramic radiographs. However, this is still a big problem because teeth often overlap, and standard convolutional neural networks (CNNs) have trouble capturing long-range spatial dependencies. This paper presents a novel hybrid deep learning architecture that combines a U-Net with an Advanced Spatial Graph Processor to address these constraints. The proposed model substitutes the conventional bottleneck of the U-Net with a Graph Neural Network (GNN) module, which distinctly represents non-local relationships among various regions of the image by converting the feature map into a graph structure. The model can dynamically focus on important structural patterns by using Graph Attention Networks (GAT). This makes it much easier to see the boundaries of complex and overlapping teeth. To address the issue of insufficient labeled medical data, a comprehensive data augmentation pipeline was implemented. This increased the training dataset by five times, making the model more generalizable. Our hybrid approach is better than the other one, as shown by experimental results on the Tufts Dental Database. The proposed model with attention (Unet + graph + attention) outperformed the baseline U-Net, achieving a Dice Score of 92.91% and an Intersection over Union (IOU) of 86.77%. These results show that using the local feature extraction capabilities of U-Net with the global structural modeling of GNNs is a strong and very accurate way to segment teeth. This has a lot of potential for use in clinical settings.
Papers List
List of archived papers
Challenges of Specification Mining-based Test Oracle for Cyber-Physical Systems
Maryam Raiyat Aliabadi - Dr Mojtaba Vahidi - Dr Ramak Ghavamizadeh
An Improved Image Classification Based In Feature Extraction From Convolutional Neural Network: Application To Flower Classification
Faeze Sadati - Dr Behrooz Rezaie
رویکرد نوین مبتنی بر خوشهبندی محلی شدت روشنایی برای جداسازی بافتهای مغزی
آسیه خسروانیان - سعید آیت
AN EFFICIENT TASK SCHEDULING IN CLOUD COMPUTING BASED ON ACO ALGORITHM
Zahra Shafahi - Dr Alireza Yari
User Preferences Elicitation in Bilateral Automated Negotiation Using Recursive Least Square Estimation
Farnaz Salmanian - Dr Hamid Jazayeri - Dr Javad Kazemitabar
Improving Personalized Federated Learning-based QoE Assessment using Clustering
Skokufe Motaharipour - Behrouz Shahgholi Ghahfarokhi - Saeid Afshari
ParaKavosh: A Parallel Algorithm for Finding Biological Network Motifs
Dr Zahra Razaghi Moghadam Kashani - Dr Ali Masoudi-nejad - Dr Abbas Nowzari-dalini
ارائه یک مدل جهت تخصیص منابع به توابع مجازی شبکه (VNF) باهدف حفظ درجه تعادل بار در شبکه های چند دامنه ای مبتنی بر نرمافزار(multi-SDN)
امین زنداقطاعی - دکتر وحید ستاری نائینی امین زنداقطاعی - وحید ستاری نائینی -
Statistical Disorder Parameters Computing For Hyperspectral Image Anomaly Detection
Dr Maryam Imani
مروری تحلیلی بر مسائل، معماری و چالشهای شبکههای عصبی گراف در گرافهای دوبخشی
صفورا اسمعیلی - فردین اخلاقیان طالب - صادق سلیمانی
more
Samin Hamayesh - Version 42.5.2