0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
نویسندگان :
Seyed Amir Mousavi
1
Mostafa Sadeghi
2
Mohammad Sadeq Sirjani
3
1- دانشگاه فردوسی مشهد
2- دانشگاه آزاد اسلامی واحد نجف آباد
3- دانشگاه فردوسی مشهد
کلمات کلیدی :
Network Security،Intrusion Detection System،Artificial Intelligence،Machine Learning
چکیده :
With the increasing Internet use, network security has become essential due to the rise in cyber-attacks on network services. To detect these attacks, a robust Intrusion Detection System (IDS) is required. Traditional IDS face challenges like high false alert rates and slow real-time attack detection. Machine learning (ML) can improve this situation, providing a low False Alarm Rate and high detection rates. This research used five ML methods (Logistic Regression, Random Forest, k-Nearest Neighbors, Support Vector Machine, and XGBoost) to classify the UNSW-NB15 dataset. The goal is to evaluate the performance of various machine learning classifiers in detecting attacks for Internet of Things (IoT) network intrusion detection. The study highlighted the importance of further research to reduce false positives and negatives. To evaluate these classifiers, precision, accuracy, recall, and F1 score were used. The results show that XGBoost achieved the highest accuracy and recall. However, only some algorithms performed perfectly in all aspects, suggesting the need for diverse detection strategies. Future research should focus on developing comprehensive systems and ensemble approaches to minimize false alerts and missed detections.
لیست مقالات
لیست مقالات بایگانی شده
پیش بینی گره های رهبر در شبکه های اجتماعی با استفاده از پیش بینی پیوند
روح اله رشیدی - فرساد زمانی بروجنی - محمد رضا سلطان آقایی - هادی فرهادی
Blockchain-based Secure UAV-assisted Battlefield Operation underlying 5G
Dhruvi Pancholi - Nilesh Kumar Jadav - Sudeep Tanwar - Deepak Garg - S. Mohammadali Zanjani
Enhancing Supervised Learning in Speech Emotion Recognition through Unsupervised Representations
Niloufar Faridani - Amirali Soltani Tehrani - Ramin Toosi
Multi-label Classification of Steel Surface Defects Using Transfer Learning and Vision Transformer
Amirhossein Komijani - Farzaneh Vafaeinezhad - Javad Khoramdel - Yasamin Borhani - Esmaeil Najafi
A Neural-based Approach to Aid Early Parkinson's Disease Diagnosis
Dr Armin Salimi-badr - Mohammad Hashemi
Fast Online Character Recognition Using a Novel Local-Global Feature Extraction Method
Ayoub Parvizi - Dr Mohammad Kazemifard - Ziba Imani
خوشه بندی مقید داده ها به کمک اتوماتای یادگیر سلولی
شکوفه علی محمدی - احمدعلی آبین
Automatic identification and reconstruction of Tuberculosis in microscopic images using convolutional auto-encoder network
Ahmad Reza Nadafi - Farahnaz Mohanna
An approach to model the optimal service provisioning in vehicular cloud networks
Farhoud Jafari Kaleibar - Maghsoud Abbaspour
Classification of mental states of human concentration based on EEG signal
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Dr Masoud Shafiee
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1