0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
نویسندگان :
Seyed Amir Mousavi
1
Mostafa Sadeghi
2
Mohammad Sadeq Sirjani
3
1- دانشگاه فردوسی مشهد
2- دانشگاه آزاد اسلامی واحد نجف آباد
3- دانشگاه فردوسی مشهد
کلمات کلیدی :
Network Security،Intrusion Detection System،Artificial Intelligence،Machine Learning
چکیده :
With the increasing Internet use, network security has become essential due to the rise in cyber-attacks on network services. To detect these attacks, a robust Intrusion Detection System (IDS) is required. Traditional IDS face challenges like high false alert rates and slow real-time attack detection. Machine learning (ML) can improve this situation, providing a low False Alarm Rate and high detection rates. This research used five ML methods (Logistic Regression, Random Forest, k-Nearest Neighbors, Support Vector Machine, and XGBoost) to classify the UNSW-NB15 dataset. The goal is to evaluate the performance of various machine learning classifiers in detecting attacks for Internet of Things (IoT) network intrusion detection. The study highlighted the importance of further research to reduce false positives and negatives. To evaluate these classifiers, precision, accuracy, recall, and F1 score were used. The results show that XGBoost achieved the highest accuracy and recall. However, only some algorithms performed perfectly in all aspects, suggesting the need for diverse detection strategies. Future research should focus on developing comprehensive systems and ensemble approaches to minimize false alerts and missed detections.
لیست مقالات
لیست مقالات بایگانی شده
Binary water stream algorithm: a new meta-heuristic optimization technique
Faezeh Rahimi Sebdani - Mehdi Nasri
جایگزینی دارو براساس پیشبینی یال روی گرافهای ناهمگون با بهرهگیری از جاسازی گراف ناهمگون
رسول سامانی - فهیمه شاهرخ شهرکی - دکتر ناصر قدیری رسول سامانی - فهیمه شاهرخ شهرکی - ناصر قدیری -
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
تشخیص بیماری شبکوری با استفاده از ترکیب الگوریتمهای یادگیری عمیق
میثم فتاحی
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Rushil Patel - Sana Narmawala - Nikunjkumar Mahida - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
تشخیص بیماری مزمن کلیوی با استفاده از یادگیرندههای گروهی و انتخاب ویژگیهای مؤثر مبتنی بر الگوریتم بهینهسازی تبادل حرارتی
صبا عارفنیا - مهدی هاشمزاده - امین گلزاری اسکوئی
Information Technology Risk Management Model for Remote Control Vehicles
Hamid Reza Naji - Aref Ayati
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
Adaptive Stopping Criteria-based A-RANSAC algorithm in Copy Move Image Forgery detection
ZAHRA HOSEINNEJAD - Dr MEHDI NASRI
ارائه یک مدل جهت تخصیص منابع به توابع مجازی شبکه (VNF) باهدف حفظ درجه تعادل بار در شبکه های چند دامنه ای مبتنی بر نرمافزار(multi-SDN)
امین زنداقطاعی - دکتر وحید ستاری نائینی امین زنداقطاعی - وحید ستاری نائینی -
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2