0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
STANet: Spatio-Temporal Attention-Enhanced WaveNet for Crime Hotspot Prediction
Authors :
Rojan Roshankar
1
Mohammad Reza Keyvanpour
2
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
Keywords :
Crime Hotspots،Spatio-Temporal data،WaveNet،Attention Mechanism،Chicago Crime dataset
Abstract :
An accurate prediction of crime hotspots is critical for optimizing law enforcement strategies and urban planning. In this paper, we introduce STANet, a Spatio-Temporal Attention-Enhanced WaveNet model developed to predict crime hotspots using spatial and temporal crime data. KMeans clustering and advanced data preprocessing techniques are combined in STANet to analyze five years of crime incidents reported in Chicago. In the model, spatial-temporal dependencies are incorporated through WaveNet architecture and enhanced through attention mechanisms in order to capture complex crime patterns more effectively. As a result of our experiments, we are able to demonstrate that STANet outperforms traditional models, such as XGBoost, DNN, and decision trees, with an accuracy of 86% and a precision and recall that are balanced. As a result of this mechanism, the model can identify and focus on the most relevant time steps dynamically, improving its accuracy in predicting the future. STANet can be used to predict hotspots for crime, offering actionable insights for resource allocation and crime prevention. To enhance the predictive capability of the model, further exploration will involve expanding the dataset and incorporating additional features.
Papers List
List of archived papers
IoT-Driven Water Quality Management System using Deep Q-Network
Shakiba Rajabi - Komeil Moghaddasi
Experimental analysis of automated negotiation agents in modeling Gaussian bidders
Fatemeh Hassanvand - Dr Faria Nassiri-Mofakham
روشی برای تشخیص مرحله پیشرفت آلزایمر در تصاویرFMRI مبتنی بر شبکه های عصبی چگال
فرساد زمانی بروجنی - عباس بهره دار
Statistical distance-base acceptance strategy for desirable offers in bilateral automated negotiation
Arash Ebrahimnezhad - Dr Hamid Jazayeriy - Dr Faria Nassiri-mofakham
طبقه بندی آسیبهای لیگامنت با استفاده از تحلیل تصاویر تشدید مغناطیسی توسط الگوریتمهای یادگیری عمیق
محسن اکبری - دکتر مریم مؤمنی محسن اکبری - مریم مؤمنی -
Multi-label Classification of Steel Surface Defects Using Transfer Learning and Vision Transformer
Amirhossein Komijani - Farzaneh Vafaeinezhad - Javad Khoramdel - Yasamin Borhani - Esmaeil Najafi
Revert Propagation: Who are responsible for a contagion initialization in a Diffusion Network?
Arman Sepehr - Mohammadzaman Zamani - Hamid Beigy - Shabnam Behzad
تشخیص بیماری شبکوری با استفاده از ترکیب الگوریتمهای یادگیری عمیق
میثم فتاحی
Integration of Electric Vehicles in Smart Grid using Deep Reinforcement Learning
Farkhondeh Kiaee
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
Seyedeh Niusha Motevallian - Dr Seyed Mohammad Hossein Hasheminejad
Samin Hamayesh - Version 40.3.1