0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Detection of Backdoor Attacks in Neural Networks Using Input Optimization
Authors :
Parsa Hashemi Khorsand
1
Ahmad Nickabadi
2
1- Amirkabir University of Technology (Tehran Polytechnic)
2- Amirkabir University of Technology (Tehran Polytechnic)
Keywords :
backdoor attacks،adversarial robustness،backdoor detection،model contamination detection،input optimization،regularization
Abstract :
This paper presents a clean-data-free framework for detecting backdoor attacks in neural networks via input optimization. We introduce two complementary strategies. First, joint input optimization with a cleanliness detector: for each label, we optimize an input that simultaneously (i) maximizes the target-label logit on the suspected model and (ii) maintains in-domain naturalness according to an auxiliary diagnostic model; the resulting patterns are then inspected for trigger-like artifacts. Second, input optimization with the largest feasible regularization coefficient: for each label, we find the largest feasible regularization coefficient that still attains a preset confidence threshold, forming a per-class signature vector; Median Absolute Deviation (MAD) is then used to flag outlier labels as compromised. On MNIST, our framework achieves 89.5 percent detection accuracy on backdoored models with 100 percent recall in poisoned-label flagging, while requiring no access to clean training data. We further compare our methods with Neural Cleanse and the Certified Backdoor Detector (CBD).
Papers List
List of archived papers
OENMOP: Loss-Aware 4×4 and 5×5 and Scalable Non‑blocking Optical Switches Designed for Odd-Even Routing Algorithm for Chip-Scale Interconnection Networks
Negin Bagheri Renani - Elham Yaghoubi - Mina Mohammadirad
یک سیستم پاسخ به نفوذ در شبکه های اینترنت اشیاء با استفاده از شبکه های مبتنی بر نرم افزار
احسان شاهرخی مینا - رضا محمدی - محمد نصیری
Design and Simulation of a New Multiplexer with Energy Analysis in Quantum Cellular Automata Technology
- - -
PeCoQ: A Dataset for Persian Complex Question Answering over Knowledge Graph
Romina Etezadi - Mehrnoush Shamsfard
A Hybrid Method to Reduce the Voltage Consumption in the Spiking Neural Networks
Shaghayegh Mehdizadeh saraj - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
جمعآوری، تحلیل و خلاصه سازی نظرات کاربران فارسی زبان در شبکههای اجتماعی پیرامون بیماری فراگیر کووید-19
محمدرضا شمس - محمد یاسین فخار محمدرضا شمس - محمد یاسین فخار -
AI-based Secure Intrusion Detection Framework for Digital Twin-enabled Critical Infrastructure
Tanisha Patel - Nilesh Kumar Jadav - Tejal Rathod - Sudeep Tanwar - Deepak Garg - Hossein Shahinzadeh
A Deep Learning Framework for Phase-Aware Feature Representation to Improve Sound Source Direction and Distance Estimation
Zahra Abolfazli - Hamid Reza Abutalebi
Revert Propagation: Who are responsible for a contagion initialization in a Diffusion Network?
Arman Sepehr - Mohammadzaman Zamani - Hamid Beigy - Shabnam Behzad
Intra Class Feature Learning and Supervised Triplet Sampling for Deep Metric Learning
Hamideh Rafiee - Ahmad Ali Abin - Seyed Soroush Majd - Viet-Vu Vu
more
Samin Hamayesh - Version 42.5.2