0% Complete
فارسی
Home
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Authors :
Amirhossein Molazadeh
1
Zahra Maroufi
2
Mehrdad Ardebilipour
3
1- دانشگاه خواجه نصیرالدین طوسی
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه خواجه نصیرالدین طوسی
Keywords :
mmwave communication،hybrid beamforming،machine learning،channel estimation،deap neural network
Abstract :
A time-varying channel model makes estimating the channel coefficients challenging for the millimeter wave (mmWave) multi user multi-input multi-output (MIMO) communication, attributable to the many coefficients that have to be estimated with a limited number of measurements as well as the severe propagation loss experienced by the mmWave band. Thus, it is proposed to divide the channel estimation in time-varying mmWave systems in two stages, using a frame structure and assuming that angles of arrival/departure (AoAs/AoDs) vary much more slowly than path gains. MmWave channels have a sparse nature that is leveraged in the first stage to formulate the estimate of AoAs/AoDs as a block-sparse signal recovery problem. By the obtained estimate of the AoAs/AoDs, in the second stage the beamforming that maximize the desired pilot power is utilized in order to measure the path gains accurately. In this article, we propose the Deep Neural Network based Angle Estimation (DNNAE) algorithm by defining a deep neural network structure with appropriate input and output. Accordingly, we provide a method based on machine learning to increase the accuracy of channel AoDs/AoAs estimation. Therefore, without the need to update the angle grid area and with low complexity, we obtain a suitable estimation accuracy. Simulation results demonstrate that with the proposed DNNAE scheme, we outperform the previously proposed Adaptive Angle Estimation (AAE) algorithm despite the much lower computational complexity.
Papers List
List of archived papers
نقش دادههای آنلاین یونیفرمیتی و تحلیل آماری پیشرفته با ترکیب پایتون و پاوربیآی در بهبود کیفیت و فرآیند تولید تایر
دانیال قادری
A Real-Time and Robust Approach for Banknote Recognition
Hani Abdi - Mohammad Javad Parseh
چارچوب مسیریابی آگاه از اعتماد تطبیقی مبتنی بر گراف زمانی برای ایمنسازی پروتکل RPL در شبکههای اینترنت اشیاء پویا
زهره شعاعی - رسول اسماعیلی فرد - رضا جاویدان
A hybrid CNN–transformer framework for retinal disease classification
Hanie Zomorrodi - Hassan Khotanlou
طراحی واسط کاربری مبتنی بر رفتار و احساسات کاربران در سیستم های هوشمند
فاطمه صبائی - دکتر احمد عبداله زاده بارفروش
A Comparison between Slimed Network and Pruned Network for Head Pose Estimation
Amir Salimiparsa - Hadi Veisi - Mohammad-shahram Moin
Recommendation Systems in Smart Agriculture: Pathway to a well-designed system
Ahmad Nameni - Amir Ghafarian Daneshmand - Omid Mahdi Ebadati E
حفظ حریم خصوصی در انتشار نسخه های متوالی دادههای شبکه اجتماعی با امکان افزایش یال
طاهره سرزهی - دکتر مهری رجایی طاهره سرزهی - مهری رجایی -
An LLM-Based Approach for Clarifying the Decisions of Vision Models in Autonomous Vehicles
Omid Mosalmani - Mohammad Javad Rashti - Seyed Enayat Alavi
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
Dr Mahila Dadfarnia - Ali Alemi Matinpour - Dr Monireh Abdoos
more
Samin Hamayesh - Version 42.5.2