0% Complete
فارسی
Home
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Authors :
Amirhossein Molazadeh
1
Zahra Maroufi
2
Mehrdad Ardebilipour
3
1- دانشگاه خواجه نصیرالدین طوسی
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه خواجه نصیرالدین طوسی
Keywords :
mmwave communication،hybrid beamforming،machine learning،channel estimation،deap neural network
Abstract :
A time-varying channel model makes estimating the channel coefficients challenging for the millimeter wave (mmWave) multi user multi-input multi-output (MIMO) communication, attributable to the many coefficients that have to be estimated with a limited number of measurements as well as the severe propagation loss experienced by the mmWave band. Thus, it is proposed to divide the channel estimation in time-varying mmWave systems in two stages, using a frame structure and assuming that angles of arrival/departure (AoAs/AoDs) vary much more slowly than path gains. MmWave channels have a sparse nature that is leveraged in the first stage to formulate the estimate of AoAs/AoDs as a block-sparse signal recovery problem. By the obtained estimate of the AoAs/AoDs, in the second stage the beamforming that maximize the desired pilot power is utilized in order to measure the path gains accurately. In this article, we propose the Deep Neural Network based Angle Estimation (DNNAE) algorithm by defining a deep neural network structure with appropriate input and output. Accordingly, we provide a method based on machine learning to increase the accuracy of channel AoDs/AoAs estimation. Therefore, without the need to update the angle grid area and with low complexity, we obtain a suitable estimation accuracy. Simulation results demonstrate that with the proposed DNNAE scheme, we outperform the previously proposed Adaptive Angle Estimation (AAE) algorithm despite the much lower computational complexity.
Papers List
List of archived papers
Improving Long-Term Engagement of Insurance Brokerages by Providing Gamified Configurations Based on The Delphi Method
Hosein Bayati - Fattaneh Taghiyareh - Sahand Hashemi
Embedded speech encoder for low-resource languages
Alireza A.Tabatabaei - Pouria Sameti - Ali Bohlooli
تخلیهی باری وظایف اینترنت اشیاء بر روی مه محاسباتی با استفاده از الگوریتم حشره آبسوار
عفت تقی زاده بیلندی - آرش دلداری - علیرضا صالحان
An approach to model the optimal service provisioning in vehicular cloud networks
Farhoud Jafari Kaleibar - Maghsoud Abbaspour
Optimal selection of seed nodes by reducing the influence of common nodes in the influence maximization problem
Farzaneh Kazemzadeh - Ali Asghar Safaei - Mitra Mirzarezaee
خوشه بندی شبکههای بیسیم ادهاک مبتنی بر محدودیتهای فازی
پروا کلیبری - کریم صمدزمینی
Improving hypergraph attention and hypergraph convolution networks
Mustafa Mohammadi Gharasuie - Mahmood Shabankhah - Ali Kamandi
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
Seyedeh Niusha Motevallian - Dr Seyed Mohammad Hossein Hasheminejad
پیش بینی ارتباط میزان مرگ و میر با هم زمانی وجود دو بیماری در مبتلایان به کرونا به کمک بگارگیری شبکه عصبی Word2Vec
سمن مثقالی - دکتر جواد عسکری سمن مثقالی - جواد عسکری -
تخلیهبار محاسباتی ریزدانه تحرکآگاه در رایانش لبه برای اینترنت اشیاء
شکوفه نوروزی - دکتر زینب موحدی شکوفه نوروزی - زینب موحدی -
more
Samin Hamayesh - Version 42.0.3