0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Embedded speech encoder for low-resource languages
Authors :
Alireza A.Tabatabaei
1
Pouria Sameti
2
Ali Bohlooli
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
Keywords :
Embedded Systems،Embedded AI،Embedded Speech embedding
Abstract :
Although high-performance artificial intelligence (AI) models require substantial computational resources, embedded systems are constrained by limited hardware capabilities, such as memory and processing power. On the other hand, embedded systems have a broad range of applications, making the integration of AI and embedded systems a prominent topic in both hardware and AI research. Creating powerful speech embeddings for embedded systems is challenging, as such models, like Wave2Vec, are typically computationally intensive. Additionally, the scarcity of data for many low-resource languages further complicates the development of high-performance models. To address these challenges, we utilized BERT to generate speech embeddings. BERT was selected because, in addition to producing meaningful embeddings, it is trained on numerous low-resource languages and facilitates the design of efficient decoders. This study introduces a compact speech encoder tailored for low-resource languages, capable of functioning as an encoder across a diverse range of speech tasks. To achieve this, we utilized BERT to generate meaningful embeddings. However, due to the high dimensionality of BERT embeddings, which imposes significant computational demands on many embedded systems, we applied dimensionality reduction techniques. The reduced-dimensional vectors were subsequently used as labels for speech data to train a model composed of convolutional neural networks (CNNs) and fully connected layers. Finally, we demonstrated the encoder's effectiveness through an application in speech command recognition.
Papers List
List of archived papers
Simulanteus Load Balancing of Servers and Controllers in SDN-based IoMT
Somaye Imanpour - Ahmadreza Montazerolghaem - Saeed Afahari
پیشنهادات کالیبره شده براساس احساسات استخراج شده از متون مرتبط با آیتم ها
شیوا پارساراد - دکتر سامان هراتی زاده شیوا پارساراد - سامان هراتی زاده -
An ESB-based Architecture for Authentication as a Service Through Enterprise Application Integration
Masoumeh Hashemi - Mehdi Sakhaei-nia - Morteza Yousef Sanati
A Multi-Task Framework Using Mamba for Identity, Age, and Gender Classification from Hand Images
Amirabbas Rezasoltani - Alireza Hosseini - Ramin Toosi - MohammadAli Akhaee
A Biased Random Key Genetic Algorithm for the Dial-a-Ride Problem
ُSomayeh Sohrabi - Koorush Ziarati - Morteza Keshtkaran
طراحی نرم افزاری مبتنی بر واقعیت افزوده با کاربرد فروش عینک
مینا علیانژاد - نسترن زنجانی - زهرا عسکری نژاد امیری
BMPA- DSL: Binary Marine Predators Algorithm to Identify Driver's Different Levels of Stress
Mahtab Vaezi - Mehdi Nasri - Farhad Azimifar - Mahdi Mosleh
STANet: Spatio-Temporal Attention-Enhanced WaveNet for Crime Hotspot Prediction
Rojan Roshankar - Mohammad Reza Keyvanpour
استخراج ویژگی مجموعه دادههای پزشکی دارای ابعاد بالا با استفاده از برنامه نویسی ژنتیک چند منظوره
سحر فقیهی راد - دکتر سیده نفیسه آل محمد سحر فقیهی راد - سیده نفیسه آل محمد -
Establishing security using cryptography and biometric authentication to counter cyber-attacks
Mohammed ADIL AKABR - Mehdi Hamidkhani - Mostafa Sadeghi
more
Samin Hamayesh - Version 42.0.3