0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Embedded speech encoder for low-resource languages
Authors :
Alireza A.Tabatabaei
1
Pouria Sameti
2
Ali Bohlooli
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
Keywords :
Embedded Systems،Embedded AI،Embedded Speech embedding
Abstract :
Although high-performance artificial intelligence (AI) models require substantial computational resources, embedded systems are constrained by limited hardware capabilities, such as memory and processing power. On the other hand, embedded systems have a broad range of applications, making the integration of AI and embedded systems a prominent topic in both hardware and AI research. Creating powerful speech embeddings for embedded systems is challenging, as such models, like Wave2Vec, are typically computationally intensive. Additionally, the scarcity of data for many low-resource languages further complicates the development of high-performance models. To address these challenges, we utilized BERT to generate speech embeddings. BERT was selected because, in addition to producing meaningful embeddings, it is trained on numerous low-resource languages and facilitates the design of efficient decoders. This study introduces a compact speech encoder tailored for low-resource languages, capable of functioning as an encoder across a diverse range of speech tasks. To achieve this, we utilized BERT to generate meaningful embeddings. However, due to the high dimensionality of BERT embeddings, which imposes significant computational demands on many embedded systems, we applied dimensionality reduction techniques. The reduced-dimensional vectors were subsequently used as labels for speech data to train a model composed of convolutional neural networks (CNNs) and fully connected layers. Finally, we demonstrated the encoder's effectiveness through an application in speech command recognition.
Papers List
List of archived papers
AN EFFICIENT TASK SCHEDULING IN CLOUD COMPUTING BASED ON ACO ALGORITHM
Zahra Shafahi - Dr Alireza Yari
The risk prediction of heart disease by using neuro-fuzzy and improved GOA
Vahid Safari Dehnavi - Masoud Shafiee
Enhancing QSAR Modeling: A Fusion of Sequential Feature Selection and Support Vector Machine
Farzaneh Khajehgili-Mirabadi - Mohammad Reza Keyvanpour
بهبود عنواننگاری تصویر با استفاده از روشهای یادگیری عمیق
مهدی صیادجو - محمدجواد فدائی اسلام
Energy–Aware Clustering Routing Protocol to Improve the Multi-hop WSN Lifetime
Alireza Gholamrezaee - Hoda Gholamrezaee - Mahtab Hadiyan
جایگذاری مقادیر ازدست رفته در داده های سری زمانی چندمتغیره برای پیش بینی مرگ ومیر بیماران با رویکرد یادگیری عمیق مبتنی بر مکانیسم توجه
سید علی هاشمی - سعید جلیلی
A No-Code Platform for Developing Customizable Recommender Systems for Restaurants
Moein-Aldin AliHosseini - MohammadReza Sharbaf
پیاده سازی موازی یک طرح (t,n)-تسهیم چند تصویر با استفاده از GPU
سعیده کبیری راد
AI-based Secure Intrusion Detection Framework for Digital Twin-enabled Critical Infrastructure
Tanisha Patel - Nilesh Kumar Jadav - Tejal Rathod - Sudeep Tanwar - Deepak Garg - Hossein Shahinzadeh
پیشبینی حجم ترافیک شهری با استفاده از دادههای سرویس نشان مورد مطالعاتی: خیابان کمال اصفهان
مهسا لطیفی - جمشید مالکی
more
Samin Hamayesh - Version 41.3.1