0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A hybrid CNN–transformer framework for retinal disease classification
Authors :
Hanie Zomorrodi
1
Hassan Khotanlou
2
1- دانشگاه بوعلی سینا
2- دانشگاه بوعلی سینا
Keywords :
convolutional neural network،retina،transformer encoder
Abstract :
Accurate diagnosis of retinal diseases is essential for preventing visual impairment and blindness. In this study, we propose a deep learning-based framework for automatic multi-class classification of retinal images that can detect 20 ocular diseases at once. The approach starts with preprocessing and improving fundus images, followed by data augmentation to boost the model’s generalization and strength. We extract features using a combined EfficientNet-ConvNeXt framework, which captures both local details and global context. Next, we refine the extracted features with a Transformer Encoder to model relationships across the entire retinal image. Finally, an MLP classifies the input. Experimental results show that our method achieves a Model Score of 0.903, surpassing earlier methods. These findings confirm that combining feature representations from the EfficientNet-ConvNeXt architecture with Transformer-based modeling significantly enhances the accuracy of retinal disease classification.
Papers List
List of archived papers
GNN-based Topology Feature Extraction for Adaptive 6G Network Slicing
Amirmasoud Sepehrian - Siavash Khorsandi
IT-based and Non-IT-based methods to separate and collect waste
Hoda Harati - Farzad Haghighi-Rad - Reza Yousefi Zenouz
بررسی روشها، مجموعههای داده و معیارهای ارزیابی در حوزهی پرسش از متون درون تصویر
کبری فرشیدی - حسن ختنلو - محرم منصوری زاده - الهام علی قارداش
AI-based Secure Intrusion Detection Framework for Digital Twin-enabled Critical Infrastructure
Tanisha Patel - Nilesh Kumar Jadav - Tejal Rathod - Sudeep Tanwar - Deepak Garg - Hossein Shahinzadeh
بهبود دقت و کارایی در شبکههای عصبی کانولوشنی با استفاده از روشهای محاسبات تقریبی
محمدرضا رفیعی نژاد - محمدرضا بینش مروستی - سید امیر اصغری
Comparative Study of Deep Reinforcement Learning and Genetic Algorithm Approaches for IoT Machine Learning Job Deployment in Fog Computing
Amir Moazeni - Omid Bushehrian
شناسایی جایگاه مالونیلاسیون در پروتئینها با بهرهگیری از استخراج ویژگی و تکنیکهای پردازش زبان طبیعی
حنانه رجبیون - محمد قاسم زاده - وحید رنجبر بافقی
Design and modeling of a waiter robot
Amin Mohammadnejad - Hami Tourajizadeh
Designing an AI-assisted toolbox for fitness activity recognition based on deep CNN
Ali Bidaran - Dr Saeed Sharifian
Beyond One-Hot: CatBoost for Heating and Cooling Load Prediction
Shayan Naghizadeh - Mohammad Saeed Rajabi - Ehsan Nazerfard
more
Samin Hamayesh - Version 42.5.2