0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
GNN-based Topology Feature Extraction for Adaptive 6G Network Slicing
Authors :
Amirmasoud Sepehrian
1
Siavash Khorsandi
2
1- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
2- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
Keywords :
6G Networks،Soft Network Slicing،Graph Neural Networks،Topology Feature Extraction،Representation Power،Comparative Evaluation
Abstract :
The evolution to 6G networks introduces unprecedented challenges, including ultra-high data rates, massive connectivity, and stringent QoS demands (e.g., sub-millisecond latency for URLLC) in highly dynamic, heterogeneous environments. Traditional hard slicing methods fall short in adapting to fluctuating traffic and resource availability, leading to inefficiencies in resource utilization, SLA violations, and increased energy consumption. This necessitates advanced adaptive mechanisms like soft network slicing, which require precise topology descriptions to predict performance metrics and enable real-time orchestration. Graph Neural Networks (GNNs) are essential here, as they excel at capturing intricate graph-structured relationships in network topologies—far superior to conventional ML models that ignore relational dependencies—facilitating scalable feature extraction for optimization tasks. This research addresses these needs through two core components: (1) a comprehensive comparison of GNN variants (GraphSAGE, GCN, GAT, TransformerConv) to evaluate their representation power in terms of descriptive accuracy and runtime; and (2) a novel embedding method that integrates current slicing requests and global graph features (e.g., density, centrality) with local attributes. Using the Internet Topology Zoo dataset augmented with 6G slice variants, we assess models on metrics like MSE, R2, SMAPE, runtime efficiency, and generalization.
Papers List
List of archived papers
روشی برای تشخیص مرحله پیشرفت آلزایمر در تصاویرFMRI مبتنی بر شبکه های عصبی چگال
فرساد زمانی بروجنی - عباس بهره دار
طبقه بندی آسیبهای لیگامنت با استفاده از تحلیل تصاویر تشدید مغناطیسی توسط الگوریتمهای یادگیری عمیق
محسن اکبری - دکتر مریم مؤمنی محسن اکبری - مریم مؤمنی -
A Comparison between Slimed Network and Pruned Network for Head Pose Estimation
Amir Salimiparsa - Hadi Veisi - Mohammad-shahram Moin
An Enhanced Fuzzy Rule-Based Method for Coronary Artery Disease Risk Prediction Using Weighted and Biased Rules
Fatemeh Ahmadi - Mohammad Javad Parseh - Ehsan Amiri
مکانیابی خطاهای کاربردها و خدمات نرمافزاری با کمک تولید داده آزمون با نامتغیرهای محتمل
محمد نصرتی مقدم - حسن حقیقی - مجتبی وحیدی اصل
Presentation of a New Decoder Based on Quantum Cellular Automata Technology Along with an Analysis of Energy Consumption
- - -
Integrating Wasserstein GANs for High-Speed Transformer-Based Neural Machine Translation
Parisa Nekoogol - Mostafa Salehi
ElectroCNN: Regressive CNN-based Energy Consumption Forecasting Leveraging Weather Data
Dharmi Patel - Mann Patel - Krisha Darji - Rajesh Gupta - Sudeep Tanwar - Jitendra Bhatia - Hossein Shahinzadeh
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Rushil Patel - Sana Narmawala - Nikunjkumar Mahida - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
بررسی روشها، مجموعههای داده و معیارهای ارزیابی در حوزهی پرسش از متون درون تصویر
کبری فرشیدی - حسن ختنلو - محرم منصوری زاده - الهام علی قارداش
more
Samin Hamayesh - Version 42.5.2