0% Complete
فارسی
Home
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
بهبود تشخیص نفوذ به شبکه اینترنت اشیاء با استفاده از مدل ترکیبی الگوریتم های بهینهسازی ازدحام ذرات، گرگ خاکستری و جنگل تصادفی
Authors :
مهدی علیرضانژاد
1
عمار عبیس حسین المعموری
2
1- عضو هیات علمی دانشگاه آزاد اسلامی واحد فیروزکوه
2- دانشجو کارشناسی ارشد مهندسی کامپیوتر ، دانشگاه آزاد اسلامی واحد اصفهان(خوراسگان)
Keywords :
اینترنت اشیا،الگوریتم بهینهسازی گرگ خاکستری،الگوریتم ازدحام ذرات،جنگل تصادفی
Abstract :
با توجه به پیشرفتهای فناوری مانند اینترنت اشیاء، رایانش ابری، دستگاهها و خدمات شبکه به طور مداوم در حال افزایش هستند و پیچیدگی شبکه را افزایش میدهند که باعث ایجاد چالشهایی در حفظ امنیت شبکه به دلیل پیچیدگی روزافزون شبکه میشود. توسعه این فناوری ها باعث شده تا مصرف کنندگان زیادی در سطح جهانی به سمت آنها سوق پیدا کنند و فرصت های زیادی را برای کسب و کارها به ارمفان بیاورد. از سوی دیگر، افزایش تعداد تجهیزات و دستگاه ها در اینترنت اشیاء باعث شده تا انواع مختلف حملات را برای فرار از امنیت شبکه اینرنت اشیا کشف و از آنها سوء استفاده شود. از این رو، مراقبت از ایمنی شبکه های اینترنت اشیا ضروری است. ابزارها و راه حل های مختلفی برای مبارزه با انواع مختلف حملات شبکه مانند دیوارهای آتش، ضد بدافزارها و فیلترهای هرزنامه وجود دارد. نمونه هایی از ابزارها و تکنیک های مختلف شامل سیستم تشخیص نفوذ مبتنی بر ناهنجاری است و سیستم تشخیص نفوذ می تواند یک ابزار امنیتی ضروری و بسیار ارزشمند برای تضمین امنیت شبکه اینترنت اشیاء باشد. بررسی مطالعات انجام شده جهت تشخیص نفوذ در اینترنت اشیاء نشان داده که مجموعه دادههای با ابعاد بالا که دادههای شبکه دنیای واقعی را شبیهسازی میکنند، پیچیدگی و زمان پردازش آموزش و آزمایش سیستم را افزایش میدهند، در حالی که ویژگیهای نامربوط منابع را هدر میدهند و نرخ تشخیص را کاهش میدهند. در این پژوهش یک مدل تشخیص نفوذ ارائه شده است که از مدل ترکیبی بهینهسازی ازدحام ذرات، گرگ خاکستری و جنگل تصادفی به جهت بهبود تشخیص نفوذ هوشمند مبتنی بر ناهنجاری برای شبکه اینترنت اشیاء ارائه دهد. در این پژوهش، الگوریتم های بهینهسازی گرگ خاکستری و ازدحام ذرات برای انتخاب ویژگی استفاده می شوند و سپس از جنگل تصادفی برای طبقه بندی داده ها استفاده می شود. از چهار مجموعه داده NSL-KDD، KDDCUP99، ADFA و UNSW-NB15 برای ارزیابی مدل پیشنهادی و دیگر الگوریتم ها استفاده گردید و نتایج تجربی نشان میدهد که مدل پیشنهادی عملکرد بهتری نسبت به سایر تکنیکها از نظر دقت، صحت، فراخوانی، امتیاز F1، نرخ خطای کمتر و توانایی بهتر در تشخیص انواع مختلف حملات دارد.
Papers List
List of archived papers
انتخاب ویژگی با استفاده از الگوریتم بهینه سازی ذرات مبتنی بر استراتژی خود تطبیقی دودویی جهت تشخیص بیماری
الهام صالحی - دکتر محمدرضا کرمی ملایی - دکتر حسام عمرانپور الهام صالحی - محمدرضا کرمی ملایی - حسام عمرانپور -
پیش بینی گره های رهبر در شبکه های اجتماعی با استفاده از پیش بینی پیوند
روح اله رشیدی - فرساد زمانی بروجنی - محمد رضا سلطان آقایی - هادی فرهادی
بهبود هزینههای تراکنش در معماری مدیریت زنجیرهی تامین مبتنی بر زنجیرهی بلوکی
مژگان نوروزی نژاد - دکتر زهرا موحدی مژگان نوروزی نژاد - زهرا موحدی -
Enhancing Supervised Learning in Speech Emotion Recognition through Unsupervised Representations
Niloufar Faridani - Amirali Soltani Tehrani - Ramin Toosi
استخراج موارد آزمون سطح برونمتد و درونکلاس از برنامههای شئگرا
محمد قرشی - حسن حقیقی
روش مهاجرت خوشهای برای بهبود بستربندی به مشتری در گردشکارهای بدون سرویسدهنده
محمدامین قسوری جهرمی - مهرداد آشتیانی - فاطمه بخشی
Binary water stream algorithm: a new meta-heuristic optimization technique
Faezeh Rahimi Sebdani - Mehdi Nasri
Enhancing Employee Promotion Prediction with a Novel Hybrid Model Integrating Convolutional Neural Networks and Random Forest
Pouya Ardehkhani - Seyyed Reza Moslemi - Hanieh Hooshmand
جمعآوری، تحلیل و خلاصه سازی نظرات کاربران فارسی زبان در شبکههای اجتماعی پیرامون بیماری فراگیر کووید-19
محمدرضا شمس - محمد یاسین فخار محمدرضا شمس - محمد یاسین فخار -
جایگذاری مقادیر ازدست رفته در داده های سری زمانی چندمتغیره برای پیش بینی مرگ ومیر بیماران با رویکرد یادگیری عمیق مبتنی بر مکانیسم توجه
سید علی هاشمی - سعید جلیلی
more
Samin Hamayesh - Version 41.3.1