0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
TDO-SA-PINN: A Co-Evolutionary Framework for Physics-Informed Neural Networks
Authors :
SeyedMohammadReza AhmadEnjavi
1
Masoud Shafiee
2
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
Keywords :
Physics-Informed Neural Networks،Tasmanian Devil Optimizer،Optimization for Deep Learning
Abstract :
Physics-Informed Neural Networks (PINNs) have emerged as a promising paradigm for solving forward and inverse partial differential equations (PDEs), yet their performance often deteriorates in stiff, multi-scale, or high-frequency regimes due to spectral bias, loss imbalance, and local optimization pathologies. While Self-Adaptive PINNs (SA-PINNs) mitigate error concen tration by dynamically adjusting residual weights, their correc tive power remains constrained by gradient-based optimizers that stagnate in rugged landscapes. To address this gap, we introduce a co-evolutionary framework that integrates SA-PINNs with the Tasmanian Devil Optimizer (TDO), a recent population based metaheuristic. In the proposed TDO-SA-PINN, adaptive weights reshape the loss landscape while a diverse swarm of candidate networks performs global, gradient-free exploration. This dual mechanism simultaneously targets spectral bias and optimizer-induced stagnation, and naturally yields an ensemble that encodes predictive uncertainty. Extensive experiments on canonical PDE benchmarks demonstrate that TDO-SA-PINNs achieve lower error and more reliable convergence compared to standard PINNs trained with ADAM/LBFGS, adaptive PINN variants, and deep ensembles. The results highlight the potential of co-evolutionary population search as a scalable and effective complement to adaptive physics-informed learning frameworks.
Papers List
List of archived papers
طبقه بندی روش های شناسایی داده های تکراری در جهت تسهیل فرایند پاکسازی داده ها
مهدی جعفری - احمد عبدالله زاده بار فروش
Comparative Study of Deep Reinforcement Learning and Genetic Algorithm Approaches for IoT Machine Learning Job Deployment in Fog Computing
Amir Moazeni - Omid Bushehrian
طراحی نرم افزاری مبتنی بر واقعیت افزوده با کاربرد فروش عینک
مینا علیانژاد - نسترن زنجانی - زهرا عسکری نژاد امیری
Low-Power Phase-Based Stochastic MAC for FPGA
Kooroush Manochehri - Amir arsalan Sakhtianchi - Mehrshad Khosraviani
Detection and Identification of Cyber-Attacks in Cyber-Physical Systems Based on Machine Learning Methods
Zohre Nasiri Zarandi
رویکرد تطبیقی-ترکیبی در پیادهسازی مشارکت الکترونیکی پایدار: درسآموختههای بینالمللی و مدل پیشنهادی ایران
عاطفه فرازمند - فاطمه پاک مهر
LuckyAgent2022: A Stop-Learning Multi-Armed Bandit Automated Negotiating Agent
Arash Ebrahimnezhad - Faria Nassiri-Mofakham
A Multi Objective & Trust-Based Workflow Scheduling Method In Cloud Computing Based On The MVO Algorithm
Fatemeh Ebadifard
تشخیص مراحل خواب با کمک جنگل تصادفی و ویژگی های فرکانسی استخراج شده از سیگنال های EEG و EOG
سیدعلی حسینی
روشی برای بهبود آزمون جهش پیشگویانه با در نظر گرفتن اثر داده های از دست رفته
طه رستمی - دکتر سعید جلیلی طه رستمی - سعید جلیلی -
more
Samin Hamayesh - Version 42.5.2