0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Intra Class Feature Learning and Supervised Triplet Sampling for Deep Metric Learning
نویسندگان :
Hamideh Rafiee
1
Ahmad Ali Abin
2
Seyed Soroush Majd
3
Viet-Vu Vu
4
1- shahid beheshti university
2- shahid beheshti university
3- shahid beheshti university
4- CMC University
کلمات کلیدی :
deep metric learning،zero-shot learning،similarity learning
چکیده :
Deep metric learning (DML) aims to learn an embedding space where semantically similar samples are mapped close together while dissimilar ones are placed farther apart. Although effective on seen classes, most DML approaches mainly emphasize inter-class separation during training and consequently struggle to generalize to unseen classes during inference. To address this limitation, we propose a method that improves generalization by learning fine-grained intra-class features and employing a supervised triplet sampling strategy. The first component, fine-grained feature learning, prevents over-compression in the embedding space by capturing structural relationships among samples within the same class, allowing the model to represent subtle intra-class variations alongside class-discriminative features. The second component, supervised triplet sampling, selects informative anchor, positive, and negative samples according to a discrimination uncertainty criterion derived from the classifier’s prediction ambiguity, ensuring that challenging examples contribute effectively to the optimization process. Experiments conducted on the Cars196 dataset demonstrate that the proposed approach achieves notable improvements in both clustering and retrieval tasks.
لیست مقالات
لیست مقالات بایگانی شده
A clonal selection mechanism for load balancing in the cloud computing system
Melika Mosayyebi - Reza Azmi
AI-based Secure Intrusion Detection Framework for Digital Twin-enabled Critical Infrastructure
Tanisha Patel - Nilesh Kumar Jadav - Tejal Rathod - Sudeep Tanwar - Deepak Garg - Hossein Shahinzadeh
A Comparison between Slimed Network and Pruned Network for Head Pose Estimation
Amir Salimiparsa - Hadi Veisi - Mohammad-shahram Moin
STANet: Spatio-Temporal Attention-Enhanced WaveNet for Crime Hotspot Prediction
Rojan Roshankar - Mohammad Reza Keyvanpour
روش مهاجرت خوشهای برای بهبود بستربندی به مشتری در گردشکارهای بدون سرویسدهنده
محمدامین قسوری جهرمی - مهرداد آشتیانی - فاطمه بخشی
چارچوب پیشبینی خرابی تطبیقی مبتنی بر شبکه عصبی گراف پویا و GRU در سامانههای صنعتی IIoT
رسول اسماعیلی فرد - لیلا رنجبر
Improving Privacy Protection in a Collaborative Blockchain-based E-Health Records System
Arman Emam-Hoseini - Samane Sobuti - دکتر سیاوش خرسندی - Alireza Hashemi-Golpayeghani
Vehicle to Vehicle Distance Estimation Utilizing Visible Light Communication and Machine Learning
Armita Khari - Houman Zarrabi
OENMOP: Loss-Aware 4×4 and 5×5 and Scalable Non‑blocking Optical Switches Designed for Odd-Even Routing Algorithm for Chip-Scale Interconnection Networks
Negin Bagheri Renani - Elham Yaghoubi - Mina Mohammadirad
آسیب شناسی استقرار بلاکچین در صنعت بانکی کشور ایران
نیلوفر مرادحاصل
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2