0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
STANet: Spatio-Temporal Attention-Enhanced WaveNet for Crime Hotspot Prediction
نویسندگان :
Rojan Roshankar
1
Mohammad Reza Keyvanpour
2
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
کلمات کلیدی :
Crime Hotspots،Spatio-Temporal data،WaveNet،Attention Mechanism،Chicago Crime dataset
چکیده :
An accurate prediction of crime hotspots is critical for optimizing law enforcement strategies and urban planning. In this paper, we introduce STANet, a Spatio-Temporal Attention-Enhanced WaveNet model developed to predict crime hotspots using spatial and temporal crime data. KMeans clustering and advanced data preprocessing techniques are combined in STANet to analyze five years of crime incidents reported in Chicago. In the model, spatial-temporal dependencies are incorporated through WaveNet architecture and enhanced through attention mechanisms in order to capture complex crime patterns more effectively. As a result of our experiments, we are able to demonstrate that STANet outperforms traditional models, such as XGBoost, DNN, and decision trees, with an accuracy of 86% and a precision and recall that are balanced. As a result of this mechanism, the model can identify and focus on the most relevant time steps dynamically, improving its accuracy in predicting the future. STANet can be used to predict hotspots for crime, offering actionable insights for resource allocation and crime prevention. To enhance the predictive capability of the model, further exploration will involve expanding the dataset and incorporating additional features.
لیست مقالات
لیست مقالات بایگانی شده
معماری مبتنی بر مدلهای زبانی بزرگ برای تخصیص وظایف پویا و خودکار در سامانه رباتیک ازدحامی چندالگوریتمی
حمید هوشمند - سینا میرخانی - محمد حسین وارث وزیریان
خوشهبندی موثر در استخراج توضیحات مفهوممحور خودکار برای شبکههای پیچشی
سعید معروف - مریم امیرمزلقانی - رضا صفابخش
A Novel Approach to Data mining algorithms and IoT based data mining machine learning
Danial Ramezani - Seyed Hossein Siadat
Comparative Study of Deep Reinforcement Learning and Genetic Algorithm Approaches for IoT Machine Learning Job Deployment in Fog Computing
Amir Moazeni - Omid Bushehrian
Wireless Virtual-Reality by considering Hybrid Beamforming in IEEE802.11ay standard
Nasim Alikhani - Abbas Mohammadi
AI-Driven Approach to Detect Equivalent Elements within Domain Models
Mohammad-Sajad Kasaei - Mohammadreza Sharbaf - Afsaneh Fatemi - Bahman Zamani
A Blockchain-Based Smart Contract Framework for Peer-to-Peer Energy Trading in Smart Grids
Hossein Shahinzadeh - Farshad Ebrahimi - S. Mohammadali Zanjani - Amirafshin Zamani - Saiedeh Mehrabani-Najafabadi - Gevork B. Gharehpetian
Classification of mental states of human concentration based on EEG signal
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Dr Masoud Shafiee
Impact of ICT and Digital Evolution on Capital Structure in Companies
Ali Noori
Improving Drug-Target Interaction Prediction Using Enhanced Feature Selection
Maryam Taheri - Mohammad Reza Keyvanpour - Mohadeseh Saadat Mousavi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2