0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
نویسندگان :
Anita Karim Ghassabpour
1
Hatam Abdoli
2
Muharram Mansoorizadeh
3
Saeid Seyedi
4
1- دانشگاه بوعلی سینا
2- دانشگاه بوعلی سینا
3- دانشگاه بوعلی سینا
4- دانشگاه بوعلی سینا
کلمات کلیدی :
Air Pollution،Particulate Matter،PM2.5،Machine Learning،Hamedan
چکیده :
Given that fine particles are one of the main origins of respiratory disorders, it is considered that PM2.5 is among the important contributors to air pollution and is a serious global health concern nowadays. This paper considers a new analytical approach for the prediction of PM2.5 concentration in Hamadan, Iran, with hopes of finding some ways to reduce the negative impacts of air pollution. During the last two years, the PM2.5 hourly data was gathered; they were preprocessed, and the outlier values were imputed using K-Nearest Neighbors techniques. To increase the accuracy, the estimation was improved by applying four machine learning models, namely, random forest, decision tree, support vector machine, and linear regression. Originality is represented by merging machine learning models with the time series model ARIMA. Thus, each model hybrid takes the strengths from all, giving a higher value of prediction of PM2.5 concentration. In this study many metrics such as MSE, RMSE, MAE, precision, and recall are applied for finding out the best model performance. Probably the most relevant outcome of our results is that the combination of linear regression and ARIMA returned a significant performance boost: MSE improved by 58%, while RMSE improved by 35%. This dramatic improvement underlines the predictive potential of hybrid models for air quality forecasting and forms a milestone in the study of PM2.5 prediction for the region.
لیست مقالات
لیست مقالات بایگانی شده
3D Mesh ONoC: Design of low Insertion Loss and Non-blocking Optical Router and Efficient Routing Algorithm
Sanaz Asadinia - Elham Yaghoubi - Mostafa Sadeghi - Mahdi Mehrabi
Non-Linear Control of Cancer Model, Considering the Drug Resistance Using Feedback Based Chemotherapy Approach
Danial Kiaei - Hami Tourajizadeh
طراحی نرم افزاری مبتنی بر واقعیت افزوده با کاربرد فروش عینک
مینا علیانژاد - نسترن زنجانی - زهرا عسکری نژاد امیری
تخلیهبار محاسباتی ریزدانه تحرکآگاه در رایانش لبه برای اینترنت اشیاء
شکوفه نوروزی - دکتر زینب موحدی شکوفه نوروزی - زینب موحدی -
بررسی روش یادگیری انتقالی جهت پیشبینی پیوند
علی روحانی فر - کمال میرزایی بدرآبادی
Automatic Analysis of Inconsistencies in Inter-Enterprise Business Processes: Introducing a Formal Adaptation Patterns Catalog
Somayeh Ashourian - Shohreh َAjoudanian
طراحی و پیاده سازی بستر اجرای بازی جنگ سایبری
مریم نصراصفهانی - بهروز ترک لادانی - بهروز شاهقلی قهفرخی - حسین قجاوند بلتیجه - نوید شیرمحمدی - مهدی شمس - محمدامین آقاکبیری
Sigma: A Secure Federated Network Gaming Platform
Keyhan Mohammadi - Reza Ebrahimi Atani
پیشبینی میزان بقای بیماران مبتلا به سرطان ریه با استفاده از ترکیب کارآمد روشهای دادهکاوی و بهینهسازی رقابت استعماری
رخشان رمضانی سرچشمه - مهدی هاشمزاده - امین گلزاری اسکوئی
AI-Driven Approach to Detect Equivalent Elements within Domain Models
Mohammad-Sajad Kasaei - Mohammadreza Sharbaf - Afsaneh Fatemi - Bahman Zamani
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1