0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
نویسندگان :
Anita Karim Ghassabpour
1
Hatam Abdoli
2
Muharram Mansoorizadeh
3
Saeid Seyedi
4
1- دانشگاه بوعلی سینا
2- دانشگاه بوعلی سینا
3- دانشگاه بوعلی سینا
4- دانشگاه بوعلی سینا
کلمات کلیدی :
Air Pollution،Particulate Matter،PM2.5،Machine Learning،Hamedan
چکیده :
Given that fine particles are one of the main origins of respiratory disorders, it is considered that PM2.5 is among the important contributors to air pollution and is a serious global health concern nowadays. This paper considers a new analytical approach for the prediction of PM2.5 concentration in Hamadan, Iran, with hopes of finding some ways to reduce the negative impacts of air pollution. During the last two years, the PM2.5 hourly data was gathered; they were preprocessed, and the outlier values were imputed using K-Nearest Neighbors techniques. To increase the accuracy, the estimation was improved by applying four machine learning models, namely, random forest, decision tree, support vector machine, and linear regression. Originality is represented by merging machine learning models with the time series model ARIMA. Thus, each model hybrid takes the strengths from all, giving a higher value of prediction of PM2.5 concentration. In this study many metrics such as MSE, RMSE, MAE, precision, and recall are applied for finding out the best model performance. Probably the most relevant outcome of our results is that the combination of linear regression and ARIMA returned a significant performance boost: MSE improved by 58%, while RMSE improved by 35%. This dramatic improvement underlines the predictive potential of hybrid models for air quality forecasting and forms a milestone in the study of PM2.5 prediction for the region.
لیست مقالات
لیست مقالات بایگانی شده
کنترل کیفیت پیش_بینانه آمیزه_های لاستیکی مدلی یکپارچه بر اساس استاندارد پذیرش متغیرهای ANSI Z1.9 و پایش رئولوژیکی برخط
آکو یاری - فرهاد محمدزاده
Benchmarking Embedding Models for Persian-Language Semantic Information Retrieval
Mahmood Kalantari - Mehdi Feghhi - Nasser Mozayani
توسعه ی کارآفرینی دیجیتال در بخش کشاورزی
شایان مظاهری - فاطمه قربانی پیرعلیدهی - فاطمه رزاقی بورخانی
کشف لبه در تصاویر پزشکی با استفاده از اتوماتای سلولی سلسله مراتبی
مریم علینقی زاده - علیرضا رضوانیان
An OWA-Powered Dynamic Customer Churn Modeling in the banking industry Based on Customer Behavioral Vectors
Masoud Alizadeh - Mohammad Soleymannejad - Behzad Moshiri
Sentiment Analysis of the Amazon Customers Using the BiGRU Neural Network Enhanced by Attention Mechanism
Sara Sinan Salman al-Abedi - Keyvan Mohebbi
Inner and Outer Bearing Fault Diagnosis of electrical Motors Using a Proposed Algorithm and Vibration Signals
Vahid Safari Dehnavi - Masoud Shafiee
Sparse Beamforming Design for Non-Coherent UD-CRAN with mm-Wave Fronthaul Links
Alireza M. Hosseini - Dr Abbas Mohammadi
A Blockchain-Based Smart Contract Framework for Peer-to-Peer Energy Trading in Smart Grids
Hossein Shahinzadeh - Farshad Ebrahimi - S. Mohammadali Zanjani - Amirafshin Zamani - Saiedeh Mehrabani-Najafabadi - Gevork B. Gharehpetian
Data Analysis to Reduce Electrical Power Plants
Amirali Sahraei - Jamshid Shanbehzadeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2