0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Electrophysiological Modeling and Interactive Approaches of Electrical Circuits and Hypergraphs for Understanding Neural Circuit Dynamics
نویسندگان :
Arian Baymani
1
Maryam Naderi Soorki
2
1- دانشگاه شهید چمران اهواز
2- دانشگاه شهید چمران اهواز
کلمات کلیدی :
neural networks،hypergraph theory،electrical circuits،network parameters
چکیده :
To improve and optimize the performance of the nervous system, one can no longer rely solely on traditional one-dimensional analytical approaches from disciplines such as biochemistry or physiology; instead, it is essential to incorporate all aspects of the sciences, including advanced mathematics, electrical engineering, computer engineering, and more. One of the best tools for understanding, increasing accuracy, and enhancing the nervous system's performance is using hypergraph concepts combined with degree n and higher circuits. This approach allows a better understanding of the neural network as a broad and complex functional network. While traditional neural network models have significantly contributed to artificial intelligence, they often need to represent the intricacies inherent to biological neural systems. This limitation has prompted more complex models to capture the dynamic interactions and interconnections between neurons effectively. A hypergraph representation allows for a nuanced and in-depth understanding of neural dynamics by modeling the multifaceted relationships among neurons. By integrating principles from electrical circuit theory into our hypergraph framework, we derive a set of optimization strategies to enhance the functional efficiency and performance of neural networks. This integration enriches the theoretical foundations of our approach and provides practical insights into the operational mechanisms of neural processing. Unlike classical models, the properties of n-degree circuits illustrate the multifaceted functions of neurons and their interconnections, enabling a depiction of how information flows and is processed in the human brain. This paper demonstrates the potential of hypergraph structures to represent neural networks' parallel and sequential processing capabilities. Using higher-order differential equations and their conceptual interpretations, it elucidates the critical role that complex connections play in cognitive functions such as memory, learning, and decision-making. Through simulations and rigorous theoretical analyses, we show that our hypergraph-based method significantly improves the optimization of neural network parameters. The results indicate substantial enhancements in task performance—including pattern recognition, sensory processing, and more complex cognitive functions. We will also explore how incorporating higher-order structures increases the accuracy of neural computations and provides a robust framework for modeling real-world cognitive scenarios that reflect human-like intelligence. This research contributes to the theoretical landscape of neural network optimization and paves the way for future studies to develop more biologically relevant neural models. Ultimately, when integrating engineering, clinical, and medical sciences, all these insights may lead to applications that enhance human-computer interaction and decision-making capabilities.
لیست مقالات
لیست مقالات بایگانی شده
بررسی تأثیر استقرار استاندارد COBIT در افزایش بهره وری سازمانها (مطالعه موردی: شعب نمایندگیهای همراه اول، ایرانسل، رایتل)
دکتر محمد ابراهیم سمیع - ساره رحمانیان محمد ابراهیم سمیع - ساره رحمانیان -
شبکههای نرمافزار محور در کلان داده: مطالعهی راهکارهای امنیتی و چالشها
احسان سلیمانی دهکردی - محمدرضا ملاخلیلی میبدی
شناسایی جایگاه مالونیلاسیون در پروتئینها با بهرهگیری از استخراج ویژگی و تکنیکهای پردازش زبان طبیعی
حنانه رجبیون - محمد قاسم زاده - وحید رنجبر بافقی
IoT-Based Model in Smart Urban Traffic Control: Graph theory and Genetic Algorithm
Saeed Doostali - Seyed Morteza Babamir - Mohammad Shiralizadeh Dezfoli - Behzad Soleimani Neysiani
طبقه بندی آسیبهای لیگامنت با استفاده از تحلیل تصاویر تشدید مغناطیسی توسط الگوریتمهای یادگیری عمیق
محسن اکبری - دکتر مریم مؤمنی محسن اکبری - مریم مؤمنی -
Classical-Quantum Multiple Access Wiretap Channel with Common Message: One-shot Rate Region
Hadi Aghaee - Dr Bahareh Akhbari
ارائه یک مدل تصمیم گیری چند معیاره فازی به منظور بهبود دقت فرایند تصمیم گیری به هنگام اختلال هوانوردی
فاطمه عطا عبدالرزاق - نگار مجمع
Leveraging Retrieval-Augmented Generation for Persian University Knowledge Retrieval
Arshia Hemmat - Mohammad Hassan Heydari - Kianoosh Vadaei - Afsaneh Fatemi
Silicon photonic microring resonators: A Novel optical router based on Negative-First routing algorithm
Negin Bagheri Renani - Elham Yaghoubi
Generalized Self-Attentive Spatiotemporal GCN with OPTICS Clustering for Recommendation Systems
Saba Zolfaghari - Seyed Mohammad Hossein Hasheminejad
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1