0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Training Stability in Variational Autoencoders Through the Integration of Score Matching Loss
نویسندگان :
Amirreza Mokhtari Rad
1
Pouya Ardehkhani
2
Hormehr Alborzi
3
1- پردیس فارابی دانشگاه تهران
2- پردیس فارابی دانشگاه تهران
3- پردیس فارابی دانشگاه تهران
کلمات کلیدی :
Variational Auto Encoder،Training،Stability،Generative Models،Score Matching
چکیده :
In this research, a Variational Autoencoder (VAE) model was developed, and the CIFAR100 dataset was employed as the primary data source. The problem addressed pertained to the instability in the training process of VAE models. To mitigate this issue, various loss expressions were explored, including the use of score matching loss independently, in conjunction with total variation loss, and in combination with reconstruction loss. The innovative approach revealed that when score matching loss was integrated either with total variation loss or when applied as a standalone loss function, the training process exhibited increased stability. This was evident through smoother loss curves and latent space visualizations that displayed characteristics akin to a normal distribution. As a consequence, this novel approach promises the potential for building more stable generative models, which can significantly enhance the overall training process in VAEs. This innovation provides a valuable contribution to the field of generative modeling, with the prospect of addressing the longstanding challenge of training stability in VAEs, thereby opening avenues for more efficient and effective model development and application.
لیست مقالات
لیست مقالات بایگانی شده
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
Seyedeh Niusha Motevallian - Dr Seyed Mohammad Hossein Hasheminejad
A Community-Based Method for Identifying Influential Nodes using Network Embedding
Nargess Vafaei - Dr Mohammad Reza Keyvanpour
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
Mohammad Bahrami - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti - Sajjad Ansaria
یک روش کارآمد جهت تشخیص آنلاین حملات DRDoS به سرویس های مبتنی بر UDP درمعماری SDN با استفاده از الگوریتم های یادگیری ماشین
میترا اکبری کهنه شهری - دکتر رضا محمدی - دکتر محمد نصیری میترا اکبری کهنه شهری - رضا محمدی - محمد نصیری -
Combinatorial Auction Based on Social Choice in the Internet of Things
Maede Esmaeili - Faria Nassiri-Mofakham - Fatemeh Hassanvand
پیش بینی گره های رهبر در شبکه های اجتماعی با استفاده از پیش بینی پیوند
روح اله رشیدی - فرساد زمانی بروجنی - محمد رضا سلطان آقایی - هادی فرهادی
A Graph Attention-Based Autoencoder for Critical Path Anomaly Detection in Microservices
Mahdi Naderi - Hossein Momeni - Shayan Shahini
Identifying Children's Personality Styles through Drawing Analysis using Machine Learning
Maedeh Mosharraf - Faezeh Banabazi
A Novel Decentralized Privacy Preserving Federated Learning Model for Healthcare Applications
Saba Ameri - Reza Ebrahimi Atani
Enhancing kNN-Based Intrusion Detection with Differential Evolution with Auto-Enhanced Population Diversity
Zohre Karimi - Zeinab Torabi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.3