0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Mamba-SAM: A Hybrid Architecture for Efficient Cardiac MRI Medical Image Segmentation
نویسندگان :
Mohammadreza Gholipour Shahraki
1
Mehdi Rezaeian
2
Mohammad Ghasemzadeh
3
1- دانشگاه یزد
2- دانشگاه یزد
3- دانشگاه یزد
کلمات کلیدی :
Medical Image Segmentation،Foundation Models،Segment Anything Model،State-Space Models،Mamba،Hybrid Architectures،Cardiac MRI
چکیده :
The Segment Anything Model (SAM) exhibits poor performance on medical images due to the domain gap from its natural image training data, high computational cost, and inherent 2D design. This paper introduces Mamba-SAM, a novel hybrid framework that efficiently adapts SAM by integrating it with a Visual Mamba (VMamba) encoder. Our architecture leverages a frozen SAM backbone for general feature extraction while a trainable VMamba branch captures domain-specific details. A Cross-Branch Attention module fuses these complementary features, and an Implicit Feature Alignment decoder ensures precise segmentation. On the ACDC cardiac MRI dataset, Mamba-SAM achieves a highly competitive average Dice score of 0.906, closely matching specialized models like UNet++, while being significantly more parameter-efficient. This work demonstrates that combining foundation models with modern state-space architectures is a powerful strategy for accurate and efficient medical image analysis.
لیست مقالات
لیست مقالات بایگانی شده
Automatic identification and reconstruction of Tuberculosis in microscopic images using convolutional auto-encoder network
Ahmad Reza Nadafi - Farahnaz Mohanna
Advanced SMS Spam Detection using Deep Complex Models and Sine-Cosine Algorithm
Sepehr Rezaei - Mohammadreza Shams - Mohsen Alambardar Meybodi
A Topic Based Method to Classify the Question Clarity in CQA Networks
Alireza Khabbazan - Dr Ahmad Ali Abin
LuckyAgent2022: A Stop-Learning Multi-Armed Bandit Automated Negotiating Agent
Arash Ebrahimnezhad - Faria Nassiri-Mofakham
Stock Market Prediction Using Hard and Soft Data Fusion
Saeed Mohammadi Dashtaki - Masoud Alizadeh - Behzad Moshiri
COVID-19 Image Retrieval Using Siamese Deep Neural Network and Hashing Technique
Farsad Zamani Boroujeni - Doryaneh Hossein Afshari - Fatemeh Mahmoodi
An Improved Image Classification Based In Feature Extraction From Convolutional Neural Network: Application To Flower Classification
Faeze Sadati - Dr Behrooz Rezaie
نظرکاوی در سطح مفهوم با استفاده از رویکردی ترکیبی
سیدرضا قادریان خیرآبادی سیدرضا قادریان خیرآبادی -
Experimental analysis of automated negotiation agents in modeling Gaussian bidders
Fatemeh Hassanvand - Dr Faria Nassiri-Mofakham
The risk prediction of heart disease by using neuro-fuzzy and improved GOA
Vahid Safari Dehnavi - Masoud Shafiee
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2