0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Handling Data Heterogeneity in Federated Medical Images Classification
نویسندگان :
Alireza Maleki
1
Hassan Khotanlou
2
1- دانشگاه بوعلی سینا
2- دانشگاه بوعلی سینا
کلمات کلیدی :
Federated Learning،Data Heterogeneity،Medical Image Classification،Vision Transformer،SCAFFOLD
چکیده :
Deep learning-based medical image classification has significant problems with heterogeneity in the data generated by the variability of imaging equipment, protocols, and patient populations within institutions. Federated Learning (FL) suggests a solution by allowing collaborative model training across institutions while not actually sharing sensitive patient information, thus preserving privacy. However, the decentralized data's Non-Independent and Identically Distributed (Non-IID) nature presents fundamental challenges: data heterogeneity and client drift that lower model convergence and performance. To address these challenges, we propose a novel FL framework that integrates appropriate data augmentation, Vision Transformers (ViT), and the SCAFFOLD algorithm to neutralize client drift and enhance convergence in heterogeneous settings. Our approach supports federated training across decentralized medical facilities without raw data exchange, while preserving privacy and label skew and domain adaptation robustness. With testing on the FED-ISIC2019 dataset, we achieve improved performance, such as 86.02% global accuracy and 0.9759 AUC, over baselines like FedAvg and other state-of-the-art FL algorithms. Experiments confirm the key benefits of SCAFFOLD's control variates and conservative augmentation in stabilizing training and improving minority class handling. The work extends privacy-preserving collaborative learning in healthcare, demonstrating practical utility for real-world multi-institutional deployments. Code available at https://github.com/allirezamaleki/Federated-Medical-Image-Classification
لیست مقالات
لیست مقالات بایگانی شده
An Efficient Link Prediction Method using Community Structures
Dr Hadi Shakibian - Setareh Mokhtari
توسعه ی کارآفرینی دیجیتال در بخش کشاورزی
شایان مظاهری - فاطمه قربانی پیرعلیدهی - فاطمه رزاقی بورخانی
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
Mohammad Bahrami - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti - Sajjad Ansaria
نقش دادههای آنلاین یونیفرمیتی و تحلیل آماری پیشرفته با ترکیب پایتون و پاوربیآی در بهبود کیفیت و فرآیند تولید تایر
دانیال قادری
AOV-IDS: Arithmetic Optimizer with Voting classifier for Intrusion Detection System
Amir Soltany Mahboob - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
Energy-Saving for User-Centric Dynamic 5G HetNets Using DRL Method
Erfan Rasti - Mohammad Ali Arami - Abbas Mohammadi
A Blockchain Architecture for Secure, High-Speed P2P Energy Trades with Game-Theoretic Coalition Formation
Amin Aboutalebi Najafabadi - Seyed Hossein Hosseinian
Fast Online Character Recognition Using a Novel Local-Global Feature Extraction Method
Ayoub Parvizi - Dr Mohammad Kazemifard - Ziba Imani
A Nano-based High-Speed QCA circuit for Information Security with Image Masking
Saeid Seyedi - Hatam Abdoli
A Multi Objective & Trust-Based Workflow Scheduling Method In Cloud Computing Based On The MVO Algorithm
Fatemeh Ebadifard
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2