0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Real-Time EEG-Based Analysis Of Stress-Inducing Stimuli
نویسندگان :
Mohsen Mahmoudi
1
Fattaneh Taghiyareh
2
Yasamin Akhavein
3
Elnaz Ghorbani
4
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- University of Tehran
کلمات کلیدی :
Electroencephalography،Real-Time Stress Detection،Machine Learning،User Modeling
چکیده :
The significance of understanding stress responses has gained increasing attention due to its profound impact on mental health and cognitive functioning. Prior studies have explored the potential of electroencephalography (EEG) in detecting stress, focusing on brain wave patterns like alpha and beta waves. There is a recognized need for the development of advanced methods that can offer real-time classification of stress induced by a wide range of stimuli. This research aims to develop a robust real-time EEG-based classification system to detect and analyze stress levels in response to various stress-inducing tasks. The methodology involved collecting EEG signals and analyzing them through signal processing and machine learning techniques. The Random Forest model was employed, achieving an accuracy of 71%. The model displayed a high level of precision in identifying stress, achieving perfect recall and F1 scores. The results indicate that different stressors elicit distinct EEG patterns, with cognitive tasks engaging the frontal brain regions more intensely, while emotional tasks show reduced frontal activity. The model's performance highlights its potential for real-time applications in stress management and mental health monitoring. These findings underscore the effectiveness of EEG in real-time stress detection and pave the way for more adaptive and personalized stress management systems.
لیست مقالات
لیست مقالات بایگانی شده
Conceptual Intelligent Model for Visual Question Answering using Attention Mechanism and Relational Reasoning
ٍElham Alighardash - Dr Hassan Khotanlou - Vahid Pour Amin
LLM-Driven Feature Extraction for Stock Market Prediction: A case study of Tehran Stock Exchange
Siavash Hosseinpour Saffarian - Saman Haratizadeh
Revert Propagation: Who are responsible for a contagion initialization in a Diffusion Network?
Arman Sepehr - Mohammadzaman Zamani - Hamid Beigy - Shabnam Behzad
Integration of Electric Vehicles in Smart Grid using Deep Reinforcement Learning
Farkhondeh Kiaee
Target-driven Navigation of a Mobile Robot using an End-to-end Deep Learning Approach
Mohammad Matin Hosni - Ali Kheiri - Esmaeil Najafi
StockFM: پیش بینی قیمت بازار بورس ایران به کمک مدل بنیادین سری زمانی
فاطمه چیت ساز - سامان هراتی زاده
Vi-Net: A Deep Violent Flow Network for Violence Detection in Video Sequences
Tahereh Zarrat Ehsan - Seyed Mehdi Mohtavipour
A Novel Approach to Data mining algorithms and IoT based data mining machine learning
Danial Ramezani - Seyed Hossein Siadat
یک روش خوشه بندی گره ها برای شبکه های حسگر بیسیم با هدف بهبود متوازن سازی بار مبتنی بر تکنیک تاپسیس
راضیه حسین رضایی - فهیمه یزدان پناه
The risk prediction of heart disease by using neuro-fuzzy and improved GOA
Vahid Safari Dehnavi - Masoud Shafiee
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.3