0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Real-Time EEG-Based Analysis Of Stress-Inducing Stimuli
نویسندگان :
Mohsen Mahmoudi
1
Fattaneh Taghiyareh
2
Yasamin Akhavein
3
Elnaz Ghorbani
4
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- University of Tehran
کلمات کلیدی :
Electroencephalography،Real-Time Stress Detection،Machine Learning،User Modeling
چکیده :
The significance of understanding stress responses has gained increasing attention due to its profound impact on mental health and cognitive functioning. Prior studies have explored the potential of electroencephalography (EEG) in detecting stress, focusing on brain wave patterns like alpha and beta waves. There is a recognized need for the development of advanced methods that can offer real-time classification of stress induced by a wide range of stimuli. This research aims to develop a robust real-time EEG-based classification system to detect and analyze stress levels in response to various stress-inducing tasks. The methodology involved collecting EEG signals and analyzing them through signal processing and machine learning techniques. The Random Forest model was employed, achieving an accuracy of 71%. The model displayed a high level of precision in identifying stress, achieving perfect recall and F1 scores. The results indicate that different stressors elicit distinct EEG patterns, with cognitive tasks engaging the frontal brain regions more intensely, while emotional tasks show reduced frontal activity. The model's performance highlights its potential for real-time applications in stress management and mental health monitoring. These findings underscore the effectiveness of EEG in real-time stress detection and pave the way for more adaptive and personalized stress management systems.
لیست مقالات
لیست مقالات بایگانی شده
Task Scheduling for Real-time Object Detection: Methods and Performance Comparison in ADAS Applications
Mahdi Seyfipoor - Sayyed Muhammad Jaffry - Siamak Mohamadi
COVID-19 Image Retrieval Using Siamese Deep Neural Network and Hashing Technique
Farsad Zamani Boroujeni - Doryaneh Hossein Afshari - Fatemeh Mahmoodi
تشخیص بیماری شبکوری با استفاده از ترکیب الگوریتمهای یادگیری عمیق
میثم فتاحی
ISPREC: Integrated Scientific Paper Recommendation using heterogeneous information network
Elaheh Jafari - Dr Bita Shams - Dr Saman Haratizadeh
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
An efficient hybrid approach for performance-based alternative design evaluation in systems engineering
Abbas Chaman Para - Maryam Nooraei Abadeh - Sondos Bahadori
پیش بینی بیماری قلبی با استفاده از روش تحلیل شبکه ای
هدیه مشتاقی محمدزاده - فاطمه باقری
AN EFFICIENT TASK SCHEDULING IN CLOUD COMPUTING BASED ON ACO ALGORITHM
Zahra Shafahi - Dr Alireza Yari
Target-driven Navigation of a Mobile Robot using an End-to-end Deep Learning Approach
Mohammad Matin Hosni - Ali Kheiri - Esmaeil Najafi
Sentiment Analysis of the Amazon Customers Using the BiGRU Neural Network Enhanced by Attention Mechanism
Sara Sinan Salman al-Abedi - Keyvan Mohebbi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2