0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Heart Sound Classification based on Group-based Sparse Features of PCG Signal
نویسندگان :
Zahra Hossein-Nejad
1
Mehdi Nasri
2
1- دانشگاه آزاد اسلامی واحد سیرجان
2- دانشگاه آزاد اسلامی واحد خمینی شهر
کلمات کلیدی :
Classification of heart sounds،Feature extraction،Group based sparse،Discrete wavelet transform
چکیده :
Heart sounds play an important role in diagnosing heart diseases. The phonocardiogram (PCG), is the recording of the sounds produced by the heart and the main heart valves. The PCG signal can be internal microphones that are inserted into the heart and valves are recorded invasively as well as non-invasively by placing the microphone on the surface of the body. Environmental factors reduce the signal-to-noise ratio (SNR). This has made it difficult and time-consuming for experts to detect heart sounds. Therefore, automatic classification of heart sounds is essential. In this article, the features are extracted by the Discrete Wavelet Transform (DWT) and group-based sparse to distinguish the main heart sounds and abnormal heart sounds. Then the Support Vector Machine (SVM) algorithm is used to classify the heart sounds. The simulation results on the PhysioNet dataset affirm the suggested method outperforms classical methods in terms of sensitivity, precision, F1-score and, specificity.
لیست مقالات
لیست مقالات بایگانی شده
Presenting an Edge-based Air Quality Management System for Smart City Scenarios
Tina Samizadeh Nikoui - Ali Balador - Amir Masoud Rahmani - Hooman Tabarsaied
شناسایی حسابهای چندکاربره بر اساس ویژگیهای شخصیتی کاربران در پلتفرمهای پخش فیلم
مهسا رضائی - مرجان کائدی
خوشهبندی موثر در استخراج توضیحات مفهوممحور خودکار برای شبکههای پیچشی
سعید معروف - مریم امیرمزلقانی - رضا صفابخش
A parallel approach to the fractional time delay model for predicting the spread of COVID-19
Mahdi Movahedian Moghaddam - Kourosh Parand
Architectural Insights: Comparing Weight Stationary and Output Stationary Systolic Arrays for Efficient Computation
Mahdi Kalbasi
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
A Topic Based Method to Classify the Question Clarity in CQA Networks
Alireza Khabbazan - Dr Ahmad Ali Abin
An efficient hybrid approach for performance-based alternative design evaluation in systems engineering
Abbas Chaman Para - Maryam Nooraei Abadeh - Sondos Bahadori
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
A Deep Learning Framework for Phase-Aware Feature Representation to Improve Sound Source Direction and Distance Estimation
Zahra Abolfazli - Hamid Reza Abutalebi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2