0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Enhancing Mutation Testing through Grammar Fuzzing and Parse Tree-Driven Mutation Generation
Authors :
Mohamad Khorsandi
1
Alireza Dastmalchi Saei
2
Mohammadreza Sharbaf
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
Keywords :
Software Testing،Mutation Testing،Parse Tree،Grammar Fuzzer
Abstract :
Mutation testing is a technique used to assess the effectiveness of software test suites. It works by deliberately introducing small, controlled changes, called mutations, into the code of the software under test (SUT). A robust and thorough test suite should be able to identify and detect these intentionally seeded errors. The key point is to ensure that the resulting mutant program can still be successfully loaded and executed, without causing compilation or runtime errors. The effectiveness of mutation testing directly depends on the nature and scope of the introduced mutations, as more advanced mutations and even targeted mutations can pose additional challenges to the test suite. This paper presents a novel approach leveraging parse trees and grammar fuzzing to create syntactically valid mutations. By generating a parse tree from the SUT’s source code, our method allows precise selection of target nodes and controls mutation granularity through Lexar and parser rules. A custom grammar fuzzer generates new code fragments, which are then semantically validated by a language-specific analyzer to ensure correctness. To address potential compilation issues, we propose selecting deeper parse tree nodes for mutations. Our approach enhances mutation testing precision, flexibility, and automation, ensuring valid and contextually appropriate code mutations.
Papers List
List of archived papers
An approach to model the optimal service provisioning in vehicular cloud networks
Farhoud Jafari Kaleibar - Maghsoud Abbaspour
Non-Linear Control of Cancer Model, Considering the Drug Resistance Using Feedback Based Chemotherapy Approach
Danial Kiaei - Hami Tourajizadeh
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Hadi Rezaeikarjani - Mojtaba Valinataj
BMPA- DSL: Binary Marine Predators Algorithm to Identify Driver's Different Levels of Stress
Mahtab Vaezi - Mehdi Nasri - Farhad Azimifar - Mahdi Mosleh
آسیب شناسی استقرار بلاکچین در صنعت بانکی کشور ایران
نیلوفر مرادحاصل
A Data-Efficient Approach to Solar Panel Micro-Crack Detection via Self-Supervised Learning
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Morteza Tavana
ارائه مدل هشت مولفه ای استراتژی جامع هوش مصنوعی سازمانی
محمد کاظم صیادی - نیلوفر مرادحاصل - علیرضا یاری
A Deep Learning Framework for Phase-Aware Feature Representation to Improve Sound Source Direction and Distance Estimation
Zahra Abolfazli - Hamid Reza Abutalebi
کشف برخط تقلب پیشنهاد ساختگی (Bid-Shielding) در مناقصه و مزایدههای الکترونیکی هلندی با رویکرد تحلیل شبکه اجتماعی
فاطمه الثلایا - دکتر سید علیرضا هاشمی گلپایگانی فاطمه الثلایا - سید علیرضا هاشمی گلپایگانی -
ارائه یک مدل جهت تخصیص منابع به توابع مجازی شبکه (VNF) باهدف حفظ درجه تعادل بار در شبکه های چند دامنه ای مبتنی بر نرمافزار(multi-SDN)
امین زنداقطاعی - دکتر وحید ستاری نائینی امین زنداقطاعی - وحید ستاری نائینی -
more
Samin Hamayesh - Version 42.5.2