0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Enhancing Mutation Testing through Grammar Fuzzing and Parse Tree-Driven Mutation Generation
Authors :
Mohamad Khorsandi
1
Alireza Dastmalchi Saei
2
Mohammadreza Sharbaf
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
Keywords :
Software Testing،Mutation Testing،Parse Tree،Grammar Fuzzer
Abstract :
Mutation testing is a technique used to assess the effectiveness of software test suites. It works by deliberately introducing small, controlled changes, called mutations, into the code of the software under test (SUT). A robust and thorough test suite should be able to identify and detect these intentionally seeded errors. The key point is to ensure that the resulting mutant program can still be successfully loaded and executed, without causing compilation or runtime errors. The effectiveness of mutation testing directly depends on the nature and scope of the introduced mutations, as more advanced mutations and even targeted mutations can pose additional challenges to the test suite. This paper presents a novel approach leveraging parse trees and grammar fuzzing to create syntactically valid mutations. By generating a parse tree from the SUT’s source code, our method allows precise selection of target nodes and controls mutation granularity through Lexar and parser rules. A custom grammar fuzzer generates new code fragments, which are then semantically validated by a language-specific analyzer to ensure correctness. To address potential compilation issues, we propose selecting deeper parse tree nodes for mutations. Our approach enhances mutation testing precision, flexibility, and automation, ensuring valid and contextually appropriate code mutations.
Papers List
List of archived papers
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
Mohammad Bahrami - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti - Sajjad Ansaria
Design and modeling of a waiter robot
Amin Mohammadnejad - Hami Tourajizadeh
A Community-Based Method for Identifying Influential Nodes using Network Embedding
Nargess Vafaei - Dr Mohammad Reza Keyvanpour
Non-Linear Control of Cancer Model, Considering the Drug Resistance Using Feedback Based Chemotherapy Approach
Danial Kiaei - Hami Tourajizadeh
SDN-based Deep Anomaly Detection For Securing Cloud Gaming Servers
Mohammadreza Ghafari - Dr Seyed Mostafa Safavi Hemami
قطعه بندی خودکار توده کلیه در تصاویر توموگرافی کامپیوتری با استفاده از همافزایی شبکه عصبی عمیق U-Net و الگوریتم فراابتکاری نهنگ
علی خلیلی - محمد مصلح - محمد خیراندیش
A Comparison between Slimed Network and Pruned Network for Head Pose Estimation
Amir Salimiparsa - Hadi Veisi - Mohammad-shahram Moin
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
Dr Mahila Dadfarnia - Ali Alemi Matinpour - Dr Monireh Abdoos
پیش بینی بیماری قلبی با استفاده از روش تحلیل شبکه ای
هدیه مشتاقی محمدزاده - فاطمه باقری
ParsEL 1.0: Unsupervised Entity Linking in Persian Social Media Texts
Majid Asgari-bidhendi - Farzane Fakhrian - Dr Behrouz Minaei-bidgoli
Samin Hamayesh - Version 40.3.1