0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Enhancing Mutation Testing through Grammar Fuzzing and Parse Tree-Driven Mutation Generation
Authors :
Mohamad Khorsandi
1
Alireza Dastmalchi Saei
2
Mohammadreza Sharbaf
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
Keywords :
Software Testing،Mutation Testing،Parse Tree،Grammar Fuzzer
Abstract :
Mutation testing is a technique used to assess the effectiveness of software test suites. It works by deliberately introducing small, controlled changes, called mutations, into the code of the software under test (SUT). A robust and thorough test suite should be able to identify and detect these intentionally seeded errors. The key point is to ensure that the resulting mutant program can still be successfully loaded and executed, without causing compilation or runtime errors. The effectiveness of mutation testing directly depends on the nature and scope of the introduced mutations, as more advanced mutations and even targeted mutations can pose additional challenges to the test suite. This paper presents a novel approach leveraging parse trees and grammar fuzzing to create syntactically valid mutations. By generating a parse tree from the SUT’s source code, our method allows precise selection of target nodes and controls mutation granularity through Lexar and parser rules. A custom grammar fuzzer generates new code fragments, which are then semantically validated by a language-specific analyzer to ensure correctness. To address potential compilation issues, we propose selecting deeper parse tree nodes for mutations. Our approach enhances mutation testing precision, flexibility, and automation, ensuring valid and contextually appropriate code mutations.
Papers List
List of archived papers
A Model-Driven Approach for Automatic Generation of Android Tourism Applications
Sara Adib - Bahman Zamani
A Neural-based Approach to Aid Early Parkinson's Disease Diagnosis
Dr Armin Salimi-badr - Mohammad Hashemi
GanjNet: Leveraging Network Modeling with Large Language Models for Persian Word Sense Induction
Amir Mohammad Kouyeshpour - Hadi Veisi - Saman Haratizadeh
A No-Code Platform for Developing Customizable Recommender Systems for Restaurants
Moein-Aldin AliHosseini - MohammadReza Sharbaf
بهبود دقت و کارایی در شبکههای عصبی کانولوشنی با استفاده از روشهای محاسبات تقریبی
محمدرضا رفیعی نژاد - محمدرضا بینش مروستی - سید امیر اصغری
Electrophysiological Modeling and Interactive Approaches of Electrical Circuits and Hypergraphs for Understanding Neural Circuit Dynamics
Arian Baymani - Maryam Naderi Soorki
پیشبینی بازار فارکس با استفاده از نمودار شمعی و شبکهی عصبی GRU
محمدرضا نوروزی - مریم مومنی
یک روش انتخاب ویژگی نیمهنظارتی جدید بر اساس منظمسازی هسین
دکتر راضیه شیخ پور راضیه شیخ پور -
انتخاب ویژگی با استفاده از الگوریتم بهینه سازی ذرات مبتنی بر استراتژی خود تطبیقی دودویی جهت تشخیص بیماری
الهام صالحی - دکتر محمدرضا کرمی ملایی - دکتر حسام عمرانپور الهام صالحی - محمدرضا کرمی ملایی - حسام عمرانپور -
A Novel Decentralized Privacy Preserving Federated Learning Model for Healthcare Applications
Saba Ameri - Reza Ebrahimi Atani
more
Samin Hamayesh - Version 42.0.3