0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Knowledge Graph Based Retrieval-Augmented Generation for Multi-Hop Question Answering Enhancement
Authors :
Mahdi Amiri Shavaki
1
Pouria Omrani
2
Ramin Toosi
3
Mohammad Ali Akhaee
4
1- دانشکده برق و کامپیوتر دانشگاه تهران
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشکده برق و کامپیوتر دانشگاه تهران
4- دانشکده برق و کامپیوتر دانشگاه تهران
Keywords :
Graph RAG،Generative AI،LLM،Multi-hop QA،NLP
Abstract :
Multi-hop question answering (QA), which requires integrating information from multiple sources, poses significant challenges in natural language processing. Existing methods often struggle with effective retrieval across documents, leading to incomplete or inaccurate answers. Building upon Graph-based Retrieval-Augmented Generation (Graph RAG), we enhance multi-hop QA by leveraging structured knowledge graphs. Specifically, we construct individual knowledge graphs for each document, where entities are represented as nodes and the relationships between them as edges enriched with contextual properties. These individual graphs are then seamlessly integrated into a comprehensive, unified graph that captures cross-document relationships. Our method improves retrieval by utilizing vector embeddings of these graph relations, enabling more effective multi-hop reasoning across the interconnected data. To evaluate our approach, we assembled a dataset of 500 documents paired with 296 multi-hop questions requiring cross-document information retrieval. Our contributions include developing a novel graph-based retrieval mechanism that leverages vector embeddings of graph relations within the Graph RAG framework, and assembling a comprehensive dataset for multi-hop QA. Comparative experiments show that our enhanced Graph RAG method significantly outperforms the baseline in factual accuracy and semantic similarity, as measured by the RAGAS framework. Additionally, an LLM-based evaluator highlights our method's superior performance in answer comprehensiveness, empowerment, and directness.
Papers List
List of archived papers
A New Routing Protocol in Internet of Vehicles Inspired of Spread Model of the Covid-19 Virus
Taha Yasin Rezapour - Esmaeil Zeinali - Reza Ebrahimi Atani - Mohammad Mehdi Gilanian Sadeghi
A Novel Decentralized Privacy Preserving Federated Learning Model for Healthcare Applications
Saba Ameri - Reza Ebrahimi Atani
LuckyAgent2022: A Stop-Learning Multi-Armed Bandit Automated Negotiating Agent
Arash Ebrahimnezhad - Faria Nassiri-Mofakham
Analysing effect of news polarity on stock market prediction: a machine learning approach
Golshid Ranjbaran - Dr Mohammad-Shahram Moin - Dr Sasan H Alizadeh - Dr Abbas Koochari
بررسی روش یادگیری انتقالی جهت پیشبینی پیوند
علی روحانی فر - کمال میرزایی بدرآبادی
Integration of Electric Vehicles in Smart Grid using Deep Reinforcement Learning
Farkhondeh Kiaee
A Mathematical Optimization Approach for Preference Learning in Movie Recommender Systems with Shared Accounts
Milad Khademali - Fazlollah Aghamohammadi - Marjan Kaedi - Alireza Nasiri
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
Seyedeh Niusha Motevallian - Dr Seyed Mohammad Hossein Hasheminejad
تولید خودکار موارد آزمون برای پوشش مسیر اصلی با الگوریتم جایا
ُSaba Yadegari - Mohammad-Reza Keyvanpour
A New Method Based on Deep Learning and Time Stabilization of the Propagation Path for Fake News Detection
Fatemeh Torgheh - Dr Mohammad Reza Keyvanpour - Dr Behrooz Masoumi
more
Samin Hamayesh - Version 42.0.3