0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Knowledge Graph Based Retrieval-Augmented Generation for Multi-Hop Question Answering Enhancement
Authors :
Mahdi Amiri Shavaki
1
Pouria Omrani
2
Ramin Toosi
3
Mohammad Ali Akhaee
4
1- دانشکده برق و کامپیوتر دانشگاه تهران
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشکده برق و کامپیوتر دانشگاه تهران
4- دانشکده برق و کامپیوتر دانشگاه تهران
Keywords :
Graph RAG،Generative AI،LLM،Multi-hop QA،NLP
Abstract :
Multi-hop question answering (QA), which requires integrating information from multiple sources, poses significant challenges in natural language processing. Existing methods often struggle with effective retrieval across documents, leading to incomplete or inaccurate answers. Building upon Graph-based Retrieval-Augmented Generation (Graph RAG), we enhance multi-hop QA by leveraging structured knowledge graphs. Specifically, we construct individual knowledge graphs for each document, where entities are represented as nodes and the relationships between them as edges enriched with contextual properties. These individual graphs are then seamlessly integrated into a comprehensive, unified graph that captures cross-document relationships. Our method improves retrieval by utilizing vector embeddings of these graph relations, enabling more effective multi-hop reasoning across the interconnected data. To evaluate our approach, we assembled a dataset of 500 documents paired with 296 multi-hop questions requiring cross-document information retrieval. Our contributions include developing a novel graph-based retrieval mechanism that leverages vector embeddings of graph relations within the Graph RAG framework, and assembling a comprehensive dataset for multi-hop QA. Comparative experiments show that our enhanced Graph RAG method significantly outperforms the baseline in factual accuracy and semantic similarity, as measured by the RAGAS framework. Additionally, an LLM-based evaluator highlights our method's superior performance in answer comprehensiveness, empowerment, and directness.
Papers List
List of archived papers
پیش بینی ارتباط میزان مرگ و میر با هم زمانی وجود دو بیماری در مبتلایان به کرونا به کمک بگارگیری شبکه عصبی Word2Vec
سمن مثقالی - دکتر جواد عسکری سمن مثقالی - جواد عسکری -
Sentiment Analysis of the Amazon Customers Using the BiGRU Neural Network Enhanced by Attention Mechanism
Sara Sinan Salman al-Abedi - Keyvan Mohebbi
تشخیص بیماری شبکوری با استفاده از ترکیب الگوریتمهای یادگیری عمیق
میثم فتاحی
Mode Selection and Resource Allocation in D2D-Enabled MC-NOMA using Matching Theory
Alireza Gholamrezaee - Hamid Farrokhi - Javad Zeraatkar Moghaddam
LLM-Driven Feature Extraction for Stock Market Prediction: A case study of Tehran Stock Exchange
Siavash Hosseinpour Saffarian - Saman Haratizadeh
بررسی کارآمدی فناوری وب 0.2 در پشتیبانی از فرآیندهای انسان محور و دانش مبنا
سید احسان ملیحی - فاطمه مشایخی کردکلا
Enhancing Software Effort Estimation with an Integrated Approach of Particle Swarm Optimization and Genetic Algorithms in Analogy-based Method
Ehsan Nasr - Keyvan Mohebbi
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
Fatemeh Rabbani - Dr Behrooz Masoumi - Dr Mohammad Reza Keyvanpour
خوشه بندی ویسیلاب های دو آوایی زبان فارسی در کاربرد لب خوانی
مهسا هدایتی پور - دکتر یاسر شکفته - دکتر محسن ابراهیمی مقدم
A Fuzzy Cluster-Based Routing Algorithm to Extend Wireless Sensor Network Lifetime
Mostafa Mirzaie - Armin Mazinani - Dr Sayyed Majid Mazinani
Samin Hamayesh - Version 40.3.1