0% Complete
فارسی
Home
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
Authors :
Fatemeh Rabbani
1
Behrooz Masoumi
2
Mohammad Reza Keyvanpour
3
1- دانشگاه آزاد اسلامی واحد قزوین
2- دانشگاه آزاد اسلامی واحد قزوین
3- دانشگاه الزهرا(س)
Keywords :
Suicide risk, Random forest, unbalanced data, Classification
Abstract :
Suicide is one of the major concerns of public health. Studies indicate the increasing prevalence of suicide, especially among adolescents. The risk factors of suicide include biological, psychological, clinical, social, and environmental factors. Involvement of various risk factors in suicide means that suicide risk in an individual is challenging; thus, to identify high-risk groups in public, a suicide risk prediction model is necessary. Today, employing machine learning and classification methods are widely used to predict suicide risk. One of the challenges of this context is unbalanced data that affect the efficiency of the prediction model. In this paper, two sampling methods are proposed to improve the performance of classifying unbalanced data, aiming to evaluate suicide risk in adolescents. In the proposed method, after balancing the dataset using sampling methods, the data is classified using random forest. The results show that the total accuracy of predicting suicide in adolescents is 0.99, with a sensitivity of 1 and specificity of 0.98. Therefore, the random forest model can predict suicide risk with high accuracy.
Papers List
List of archived papers
Mamba-SAM: A Hybrid Architecture for Efficient Cardiac MRI Medical Image Segmentation
Mohammadreza Gholipour Shahraki - Mehdi Rezaeian - Mohammad Ghasemzadeh
Analysing effect of news polarity on stock market prediction: a machine learning approach
Golshid Ranjbaran - Dr Mohammad-Shahram Moin - Dr Sasan H Alizadeh - Dr Abbas Koochari
COVID-19 Image Retrieval Using Siamese Deep Neural Network and Hashing Technique
Farsad Zamani Boroujeni - Doryaneh Hossein Afshari - Fatemeh Mahmoodi
SBST challenges from the perspective of the test techniques
Sepideh Kashefi Gargari - Dr Mohammad Reza Keyvanpour
Designation and development of Camera Sensor for identification of polymer type
Negin Piri - Ahmad Salehi - Erfan Memarian
Low-Power Phase-Based Stochastic MAC for FPGA
Kooroush Manochehri - Amir arsalan Sakhtianchi - Mehrshad Khosraviani
A Deep Learning Framework for Phase-Aware Feature Representation to Improve Sound Source Direction and Distance Estimation
Zahra Abolfazli - Hamid Reza Abutalebi
ارائه یک سیستم توصیهگر آگاه به زمینه مبتنی بر رفتار کاربر در شبکه اجتماعی با استفاده از پیامهای برچسب شده جغرافیایی
زهرا امینی - سید علیرضا هاشمی گلپایگانی - علی میرزائی
IoT-Based Model in Smart Urban Traffic Control: Graph theory and Genetic Algorithm
Saeed Doostali - Seyed Morteza Babamir - Mohammad Shiralizadeh Dezfoli - Behzad Soleimani Neysiani
Experimental analysis of automated negotiation agents in modeling Gaussian bidders
Fatemeh Hassanvand - Dr Faria Nassiri-Mofakham
more
Samin Hamayesh - Version 42.5.2