0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Evaluation of Machine Learning Models in Persian Text Classification for Depression Detection with Improved Feature Selection
Authors :
Rasool TayebMoghadam
1
Amirhossein Damia
2
Hadi Bahrampoor
3
Maryam Zarghani
4
1- وزارت آموزش و پرورش
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه آزاد اسلامی واحد علوم و تحقیقات، یاسوج
4- دانشگاه صنعتی شاهرود
Keywords :
Persian Text Analysis،Depression Detection،Text Classification،Machine Learning
Abstract :
This study aims to identify and classify Persian texts related to depression using machine learning algorithms. The innovation of this research includes the collection and preparation of Persian data from various social networks such as Instagram, WhatsApp, Telegram, and Twitter. The dataset consists of 2000 Persian texts divided into two classes: "depression" and "non-depression." Features were extracted using the TF-IDF method, which was optimized through a custom approach. This optimization improved the accuracy of the machine learning models. Several algorithms, including SVM, Naive Bayes, KNN, and Random Forest, were evaluated. Results showed that the Naive Bayes algorithm, with an accuracy of 97.36%, outperformed other models. This research demonstrates that combining improved feature selection methods with various machine learning models can effectively identify depression in Persian texts and contribute to the development of high-accuracy text analysis systems.
Papers List
List of archived papers
Enhancing Mutation Testing through Grammar Fuzzing and Parse Tree-Driven Mutation Generation
Mohamad Khorsandi - Alireza Dastmalchi Saei - Mohammadreza Sharbaf
LLM-Driven Feature Extraction for Stock Market Prediction: A case study of Tehran Stock Exchange
Siavash Hosseinpour Saffarian - Saman Haratizadeh
A Deep Learning Framework for Phase-Aware Feature Representation to Improve Sound Source Direction and Distance Estimation
Zahra Abolfazli - Hamid Reza Abutalebi
An Enhanced Fuzzy Rule-Based Method for Coronary Artery Disease Risk Prediction Using Weighted and Biased Rules
Fatemeh Ahmadi - Mohammad Javad Parseh - Ehsan Amiri
خوشه بندی ویسیلاب های دو آوایی زبان فارسی در کاربرد لب خوانی
مهسا هدایتی پور - دکتر یاسر شکفته - دکتر محسن ابراهیمی مقدم
Face Recognition Based on Local Statistical Features and Artificial Neural Network
Mehdi Moghimi - Dr Hadi Grailu
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Rushil Patel - Sana Narmawala - Nikunjkumar Mahida - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
فراتر از ارزیابی: استفاده استراتژیک از نظریه بازی برای بازتعریف سازوکارهای همتاسنجی
سیده فاطمه نورانی - سحر مقراضی
Handling Data Heterogeneity in Federated Medical Images Classification
Alireza Maleki - Hassan Khotanlou
A novel approach audio watermarking based on (GBT,DCT,SVD)
Mahdi Mosleh
more
Samin Hamayesh - Version 42.5.2