0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Enhancing Mutation Testing through Grammar Fuzzing and Parse Tree-Driven Mutation Generation
نویسندگان :
Mohamad Khorsandi
1
Alireza Dastmalchi Saei
2
Mohammadreza Sharbaf
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
کلمات کلیدی :
Software Testing،Mutation Testing،Parse Tree،Grammar Fuzzer
چکیده :
Mutation testing is a technique used to assess the effectiveness of software test suites. It works by deliberately introducing small, controlled changes, called mutations, into the code of the software under test (SUT). A robust and thorough test suite should be able to identify and detect these intentionally seeded errors. The key point is to ensure that the resulting mutant program can still be successfully loaded and executed, without causing compilation or runtime errors. The effectiveness of mutation testing directly depends on the nature and scope of the introduced mutations, as more advanced mutations and even targeted mutations can pose additional challenges to the test suite. This paper presents a novel approach leveraging parse trees and grammar fuzzing to create syntactically valid mutations. By generating a parse tree from the SUT’s source code, our method allows precise selection of target nodes and controls mutation granularity through Lexar and parser rules. A custom grammar fuzzer generates new code fragments, which are then semantically validated by a language-specific analyzer to ensure correctness. To address potential compilation issues, we propose selecting deeper parse tree nodes for mutations. Our approach enhances mutation testing precision, flexibility, and automation, ensuring valid and contextually appropriate code mutations.
لیست مقالات
لیست مقالات بایگانی شده
Aspect-Based Sentiment Analysis of After-Sales Service Quality: A Case Study of Snowa and Competitors Using Digikala Reviews
Safiyeh Samadanian - Marjan Kaedi
An Eco-Friendly Cosmopolitan (EFC) by Recycling Scientific/Industrial Towns (RSITs)
Engineer Reza Khalilian - Dr. Abdalhossein Rezai - Dr. Mohammadreza Talakesh
Classification of Personality Traits on Facebook Using Key Phrase Extraction, Language Models and Machine Learning
Faezeh Safari - Abdolah Chalechale
ISAAF: بهبود چارچوب مجوز خودتطبیق SAAF با استفاده از پیادهسازی مبتنی بر عامل و مفهوم I-Shairing
الهام معین الدینی - دکتر منیره عبدوس - دکتر اسلام ناظمی
Identifying Children's Personality Styles through Drawing Analysis using Machine Learning
Maedeh Mosharraf - Faezeh Banabazi
بررسی روش یادگیری انتقالی جهت پیشبینی پیوند
علی روحانی فر - کمال میرزایی بدرآبادی
Improving Long-Term Engagement of Insurance Brokerages by Providing Gamified Configurations Based on The Delphi Method
Hosein Bayati - Fattaneh Taghiyareh - Sahand Hashemi
Video Steganography in HEVC Using Intra-Prediction Modes
Vahidreza Seirafian - Masoud Omomi
انتخاب ویژگی با استفاده از الگوریتم بهینه سازی ذرات مبتنی بر استراتژی خود تطبیقی دودویی جهت تشخیص بیماری
الهام صالحی - دکتر محمدرضا کرمی ملایی - دکتر حسام عمرانپور الهام صالحی - محمدرضا کرمی ملایی - حسام عمرانپور -
Improving Drug-Target Interaction Prediction Using Enhanced Feature Selection
Maryam Taheri - Mohammad Reza Keyvanpour - Mohadeseh Saadat Mousavi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1