0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Data-Efficient Approach to Solar Panel Micro-Crack Detection via Self-Supervised Learning
نویسندگان :
Alireza Akhavan safaei
1
Pegah Saboori
2
Reza Ramezani
3
Morteza Tavana
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- دانشگاه اصفهان
4- شرکت آسمان رصد هادی
کلمات کلیدی :
Data Augmentation،Micro-Crack Detection،Convolutional Neural Network،Self-Supervised Learning،Transfer Learning
چکیده :
This study presents a method for the automatic identification of micro-cracks in photovoltaic solar modules using deep learning techniques. The main challenge in this research is the lack of labeled data and class imbalance for the detection of micro-cracks. The proposed method employs a multi-stage approach. Initially, 10% of the dataset is manually labeled to train a simple convolutional neural network model. This model is then used to generate pseudo-labels for the unlabeled data using a self-supervised approach. The pseudo-labels are manually reviewed to increase the number of micro-crack samples in the training set. Data augmentation techniques are also applied to increase the size and diversity of the training dataset. Finally, the pre-trained ResNet-50 model is fine-tuned on the expanded labeled dataset for accurate detection of micro-cracks. Advanced preprocessing steps, including solar cell segmentation, cropping, and data augmentation, have been performed. The class imbalance problem is addressed through undersampling and weighted loss functions. The experimental results demonstrate the effectiveness of the proposed method, achieving an accuracy of 0.9782 and an F1-score of 0.7776 in the detection of micro-cracks in electroluminescence images of solar panels. This study provides insights into the use of limited labeled data for training robust deep learning models for the identification of defects in solar modules.
لیست مقالات
لیست مقالات بایگانی شده
Human Resource Allocation to the Credit Requirement Process, A Process Mining Approach
Omid Mahdi Ebadati - Mohammad Mehrabioun - Shokoofeh Sadat Hosseini
Intelligent Transportation System (ITS) Using Internet of Things (IoT)
Engineer Reza Khalilian - Dr. Abdalhossein Rezai - Dr. Sayyed Mohammad Reza Talakesh
Energy–Aware Clustering Routing Protocol to Improve the Multi-hop WSN Lifetime
Alireza Gholamrezaee - Hoda Gholamrezaee - Mahtab Hadiyan
Extending Interaction Flow Modeling Language as a Profile for Form-making Systems
Ghazaleh Shahin - Dr Bahman Zamani
Classification of mental states of human concentration based on EEG signal
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Dr Masoud Shafiee
Heart Sound Classification based on Group-based Sparse Features of PCG Signal
Zahra Hossein-Nejad - Mehdi Nasri
بهبود کارایی بارسپاری در شبکه های سلولی با استفاده از ارتباطات مشارکتی در لایه MAC
نبیل الراشدی - رسول صادقی - وائل حسین اللامی - مهدی حمیدخانی
پیشبینی حجم ترافیک شهری با استفاده از دادههای سرویس نشان مورد مطالعاتی: خیابان کمال اصفهان
مهسا لطیفی - جمشید مالکی
Smart City Standardized Evaluation :Use Case of Mashhad
Dr ُSeyed Mohammadreza Mirsarraf - Dr Alireza Yari - Dr Navid Zohdi - Ali Motevalizadeh
Enhancing Supervised Learning in Speech Emotion Recognition through Unsupervised Representations
Niloufar Faridani - Amirali Soltani Tehrani - Ramin Toosi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1