0% Complete
English
صفحه اصلی
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
نویسندگان :
Amirhossein Molazadeh
1
Zahra Maroufi
2
Mehrdad Ardebilipour
3
1- دانشگاه خواجه نصیرالدین طوسی
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه خواجه نصیرالدین طوسی
کلمات کلیدی :
mmwave communication،hybrid beamforming،machine learning،channel estimation،deap neural network
چکیده :
A time-varying channel model makes estimating the channel coefficients challenging for the millimeter wave (mmWave) multi user multi-input multi-output (MIMO) communication, attributable to the many coefficients that have to be estimated with a limited number of measurements as well as the severe propagation loss experienced by the mmWave band. Thus, it is proposed to divide the channel estimation in time-varying mmWave systems in two stages, using a frame structure and assuming that angles of arrival/departure (AoAs/AoDs) vary much more slowly than path gains. MmWave channels have a sparse nature that is leveraged in the first stage to formulate the estimate of AoAs/AoDs as a block-sparse signal recovery problem. By the obtained estimate of the AoAs/AoDs, in the second stage the beamforming that maximize the desired pilot power is utilized in order to measure the path gains accurately. In this article, we propose the Deep Neural Network based Angle Estimation (DNNAE) algorithm by defining a deep neural network structure with appropriate input and output. Accordingly, we provide a method based on machine learning to increase the accuracy of channel AoDs/AoAs estimation. Therefore, without the need to update the angle grid area and with low complexity, we obtain a suitable estimation accuracy. Simulation results demonstrate that with the proposed DNNAE scheme, we outperform the previously proposed Adaptive Angle Estimation (AAE) algorithm despite the much lower computational complexity.
لیست مقالات
لیست مقالات بایگانی شده
انتخاب ویژگی با استفاده از الگوریتم بهینه سازی ذرات مبتنی بر استراتژی خود تطبیقی دودویی جهت تشخیص بیماری
الهام صالحی - دکتر محمدرضا کرمی ملایی - دکتر حسام عمرانپور الهام صالحی - محمدرضا کرمی ملایی - حسام عمرانپور -
Ensemble Model Based on an Improved Convolutional Neural Network with a Domain-agnostic Data Augmentation Technique
Faraz Fatahnaie - Armin Azhdehnia - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
A Multi-Task Framework Using Mamba for Identity, Age, and Gender Classification from Hand Images
Amirabbas Rezasoltani - Alireza Hosseini - Ramin Toosi - MohammadAli Akhaee
Detection and Identification of Cyber-Attacks in Cyber-Physical Systems Based on Machine Learning Methods
Zohre Nasiri Zarandi
Stock Market Prediction Using Hard and Soft Data Fusion
Saeed Mohammadi Dashtaki - Masoud Alizadeh - Behzad Moshiri
طراحی نرم افزاری مبتنی بر واقعیت افزوده با کاربرد فروش عینک
مینا علیانژاد - نسترن زنجانی - زهرا عسکری نژاد امیری
Securing the Internet of Things via Blockchain-Aided Smart Contracts
S. Mohammadali Zanjani - Hossein Shahinzadeh - Jalal Moradi - Zohreh Rezaei - Bahareh Kaviani-Baghbaderani - Sudeep Tanwar
A Model-Driven Approach for Automatic Generation of Android Tourism Applications
Sara Adib - Bahman Zamani
Predictive Maintenance using LSTM and Adaptive Windowing
Aien Ghanbari Adivi - Behrouz Shahgholi Ghahfarokhi
Statistical distance-base acceptance strategy for desirable offers in bilateral automated negotiation
Arash Ebrahimnezhad - Dr Hamid Jazayeriy - Dr Faria Nassiri-mofakham
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1