0% Complete
English
صفحه اصلی
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
نویسندگان :
Amirhossein Molazadeh
1
Zahra Maroufi
2
Mehrdad Ardebilipour
3
1- دانشگاه خواجه نصیرالدین طوسی
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه خواجه نصیرالدین طوسی
کلمات کلیدی :
mmwave communication،hybrid beamforming،machine learning،channel estimation،deap neural network
چکیده :
A time-varying channel model makes estimating the channel coefficients challenging for the millimeter wave (mmWave) multi user multi-input multi-output (MIMO) communication, attributable to the many coefficients that have to be estimated with a limited number of measurements as well as the severe propagation loss experienced by the mmWave band. Thus, it is proposed to divide the channel estimation in time-varying mmWave systems in two stages, using a frame structure and assuming that angles of arrival/departure (AoAs/AoDs) vary much more slowly than path gains. MmWave channels have a sparse nature that is leveraged in the first stage to formulate the estimate of AoAs/AoDs as a block-sparse signal recovery problem. By the obtained estimate of the AoAs/AoDs, in the second stage the beamforming that maximize the desired pilot power is utilized in order to measure the path gains accurately. In this article, we propose the Deep Neural Network based Angle Estimation (DNNAE) algorithm by defining a deep neural network structure with appropriate input and output. Accordingly, we provide a method based on machine learning to increase the accuracy of channel AoDs/AoAs estimation. Therefore, without the need to update the angle grid area and with low complexity, we obtain a suitable estimation accuracy. Simulation results demonstrate that with the proposed DNNAE scheme, we outperform the previously proposed Adaptive Angle Estimation (AAE) algorithm despite the much lower computational complexity.
لیست مقالات
لیست مقالات بایگانی شده
خوشه بندی ویسیلاب های دو آوایی زبان فارسی در کاربرد لب خوانی
مهسا هدایتی پور - دکتر یاسر شکفته - دکتر محسن ابراهیمی مقدم
A Biased Random Key Genetic Algorithm for the Dial-a-Ride Problem
ُSomayeh Sohrabi - Koorush Ziarati - Morteza Keshtkaran
بهبود عنواننگاری تصویر با استفاده از روشهای یادگیری عمیق
مهدی صیادجو - محمدجواد فدائی اسلام
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
Dr Mahila Dadfarnia - Ali Alemi Matinpour - Dr Monireh Abdoos
شناسایی حملات رومینگ تلفنهمراه با استفاده از یادگیری ماشین
سعیده سیف الدین - سجاد شیرعلی شهرضا
Target-driven Navigation of a Mobile Robot using an End-to-end Deep Learning Approach
Mohammad Matin Hosni - Ali Kheiri - Esmaeil Najafi
HTCAR: Hierarchical Text Classification based on aggregation of Representations
Ali Bavand - Mohammad Mehdi Homayounpour - Ahmad Nickabadi
A Framework for Systematic Stability Assessment of Post-hoc Explanations in Text Classification
Parman Mohammadalizadeh - Parham Mohammadalizadeh - Ayda Mahmoudian
A novel approach audio watermarking based on (GBT,DCT,SVD)
Mahdi Mosleh
Mode Selection and Resource Allocation in D2D-Enabled MC-NOMA using Matching Theory
Alireza Gholamrezaee - Hamid Farrokhi - Javad Zeraatkar Moghaddam
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2