0% Complete
English
صفحه اصلی
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
نویسندگان :
Amirhossein Molazadeh
1
Zahra Maroufi
2
Mehrdad Ardebilipour
3
1- دانشگاه خواجه نصیرالدین طوسی
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه خواجه نصیرالدین طوسی
کلمات کلیدی :
mmwave communication،hybrid beamforming،machine learning،channel estimation،deap neural network
چکیده :
A time-varying channel model makes estimating the channel coefficients challenging for the millimeter wave (mmWave) multi user multi-input multi-output (MIMO) communication, attributable to the many coefficients that have to be estimated with a limited number of measurements as well as the severe propagation loss experienced by the mmWave band. Thus, it is proposed to divide the channel estimation in time-varying mmWave systems in two stages, using a frame structure and assuming that angles of arrival/departure (AoAs/AoDs) vary much more slowly than path gains. MmWave channels have a sparse nature that is leveraged in the first stage to formulate the estimate of AoAs/AoDs as a block-sparse signal recovery problem. By the obtained estimate of the AoAs/AoDs, in the second stage the beamforming that maximize the desired pilot power is utilized in order to measure the path gains accurately. In this article, we propose the Deep Neural Network based Angle Estimation (DNNAE) algorithm by defining a deep neural network structure with appropriate input and output. Accordingly, we provide a method based on machine learning to increase the accuracy of channel AoDs/AoAs estimation. Therefore, without the need to update the angle grid area and with low complexity, we obtain a suitable estimation accuracy. Simulation results demonstrate that with the proposed DNNAE scheme, we outperform the previously proposed Adaptive Angle Estimation (AAE) algorithm despite the much lower computational complexity.
لیست مقالات
لیست مقالات بایگانی شده
Targeted Vaccination for COVID-19 Using Mobile Communication Networks
Mohammadmohsen Jadidi - Pegah Moslemi - Saeed Jamshidiha - Iman Masroori - Abbas Mohammadi - Vahid Pourahmadi
Epileptic Seizure Detection based on Statistical and Wavelet Features and Siamese Network
Zahra Hossein-Nejad - Mehdi Nasri
توسعه مدل مفهومی طراحی فرآیند مدیریت بحران سیلاب از طریق بهینه سازی استفاده از دستگاه های اینترنت اشیاء (IoT Devices) در تصمیم گیری
محمود رسولی - سید احسان ملیحی
بکارگیری الگوریتم بهینه سازی فاخته و منطق فازی به منظور بهبود زمانبندی وظایف در محیط محاسبات مه
فاطمه دوامی - حمید جلیلوند - فاطمه نجفی
Sustainability analysis and improvement of model driven engineering and model transformation languages
Kevin Lano - Shekoufeh Kolahdouz Rahimi
An Efficient Link Prediction Method using Community Structures
Dr Hadi Shakibian - Setareh Mokhtari
ElectroCNN: Regressive CNN-based Energy Consumption Forecasting Leveraging Weather Data
Dharmi Patel - Mann Patel - Krisha Darji - Rajesh Gupta - Sudeep Tanwar - Jitendra Bhatia - Hossein Shahinzadeh
Knowledge Extraction from Technical Reports Based on Large Language Models: An Exploratory Study
Parsa Bakhtiari - Hassan Bashiri - Alireza Khalilipour - Masoud Nasiripour - Moharram Challenger
AN EFFICIENT TASK SCHEDULING IN CLOUD COMPUTING BASED ON ACO ALGORITHM
Zahra Shafahi - Dr Alireza Yari
IT-based and Non-IT-based methods to separate and collect waste
Hoda Harati - Farzad Haghighi-Rad - Reza Yousefi Zenouz
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2