0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predictive Maintenance using LSTM and Adaptive Windowing
نویسندگان :
Aien Ghanbari Adivi
1
Behrouz Shahgholi Ghahfarokhi
2
1- University of Isfahan
2- University of Isfahan
کلمات کلیدی :
predictive maintenance،deep learning،LSTM،time series analysis
چکیده :
Predictive maintenance is a critical approach in modern industries, aiming to forecast equipment failures and reduce downtime by leveraging operational data. Traditional methods, such as time series analysis, struggle to capture complex temporal dependencies in large-scale datasets. In this study, we propose an innovative solution that integrates Long Short-Term Memory (LSTM) networks with an adaptive windowing strategy for predictive maintenance. Unlike conventional methods that rely on fixed window sizes, our approach dynamically adjusts the window size based on the data's characteristics, optimizing the temporal context provided to the model. We apply this method to the Microsoft Azure predictive maintenance dataset from Kaggle and demonstrate that the adaptive window size significantly enhances the precision of failure predictions. This research highlights the potential of combining LSTM with window size optimization to improve the accuracy and efficiency of predictive maintenance models in real-world industrial applications.
لیست مقالات
لیست مقالات بایگانی شده
AI-Driven Approach to Detect Equivalent Elements within Domain Models
Mohammad-Sajad Kasaei - Mohammadreza Sharbaf - Afsaneh Fatemi - Bahman Zamani
شناسایی حملات فیشینگ با استفاده از الگوریتم عقاب آتشین و شبکه عصبی کانولوشن
علی کوشاری - مهدی فرتاش
Advanced SMS Spam Detection using Deep Complex Models and Sine-Cosine Algorithm
Sepehr Rezaei - Mohammadreza Shams - Mohsen Alambardar Meybodi
Mamba-SAM: A Hybrid Architecture for Efficient Cardiac MRI Medical Image Segmentation
Mohammadreza Gholipour Shahraki - Mehdi Rezaeian - Mohammad Ghasemzadeh
A Real-Time and Robust Approach for Banknote Recognition
Hani Abdi - Mohammad Javad Parseh
آسیب شناسی استقرار بلاکچین در صنعت بانکی کشور ایران
نیلوفر مرادحاصل
تشخیص حمله تزریق داده کاذب با روش OCD در شبکه هوشمند برق
محدثه جلیلی سنجرانی - سعید جلیلی - محمدکاظم شیخ الاسلامی
An integrated approach for estimating software cost estimation using Adaptive Neuro-Fuzzy Inference System and the Grey Wolf Optimization algorithm
Maryam Karimi - Taghi Javdani Gandomani - Mahdi Mosleh
An Enhanced Fuzzy Rule-Based Method for Coronary Artery Disease Risk Prediction Using Weighted and Biased Rules
Fatemeh Ahmadi - Mohammad Javad Parseh - Ehsan Amiri
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
Fatemeh Rabbani - Dr Behrooz Masoumi - Dr Mohammad Reza Keyvanpour
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2