0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Designing an AI-assisted toolbox for fitness activity recognition based on deep CNN
نویسندگان :
Ali Bidaran
1
Saeed Sharifian
2
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Fitness AI-assisted, Magnitude Flow, Two stream Network, Observer Network, Virtual classroom
چکیده :
Online applications for virtual meetings have be- come handy for many fitness instructors these days. However, currently used applications have limitations in tracking clients’ performance, simultaneously and particularly for large number of participants. Thus, we proposed a fitness AI-assisted toolbox to detect fitness activities of athletes from steamed frames. We introduced a Magnitude flow method that computes the dense optical flow of each frame and provides details of human body poses during exercising. We introduced the two-stream convolutional neural network to only detect fitness actions from RGB frames and magnitude flows. We designed a light spatial network and a temporal network with a MobileNetV1 backbone and a Multi-layer perceptron (MLP) network as the classification head. Moreover, we introduced an Observer network as a score fusion approach to improve the final accuracy of detection and reduce the uncertainties between the two networks. We test our proposed method over a selected fitness class of the UCF dataset. We test the selected classes and acquired plenary results by considering its ability in detecting major fitness actions. Our efficient accuracies and confusion matrices describe that our proposed model is an effective solution to assist fitness instructors in tracking, analyzing and conveniently supervising a large number of participants.
لیست مقالات
لیست مقالات بایگانی شده
A Joint Trajectory and Energy Harvesting Method for an UAV Enabled Disaster Response Network
Hosein Mohammadi Firozjae - Javad Zeraatkar Moghaddam - Mehrdad Ardebilipour
Heart Sound Classification based on Group-based Sparse Features of PCG Signal
Zahra Hossein-Nejad - Mehdi Nasri
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
Improving Personalized Federated Learning-based QoE Assessment using Clustering
Skokufe Motaharipour - Behrouz Shahgholi Ghahfarokhi - Saeid Afshari
Using Deconvolutional Variational Autoencoder for Answer Selection in Community Question Answering
Golshan Afzali Boroujeni - Heshaam Faili
بکارگیری الگوریتم بهینه سازی فاخته و منطق فازی به منظور بهبود زمانبندی وظایف در محیط محاسبات مه
فاطمه دوامی - حمید جلیلوند - فاطمه نجفی
Enhancing Supervised Learning in Speech Emotion Recognition through Unsupervised Representations
Niloufar Faridani - Amirali Soltani Tehrani - Ramin Toosi
Enhancing Mutation Testing through Grammar Fuzzing and Parse Tree-Driven Mutation Generation
Mohamad Khorsandi - Alireza Dastmalchi Saei - Mohammadreza Sharbaf
A Multi Objective & Trust-Based Workflow Scheduling Method In Cloud Computing Based On The MVO Algorithm
Fatemeh Ebadifard
شناسایی کمپلکس های پروتئینی با استفاده از داده های زیستی و خوشه بندی فازی
مریم مولی وردیخانی - دکتر سعید جلیلی مریم مولی وردیخانی - سعید جلیلی -
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1