0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
نویسندگان :
Fatemeh Rabbani
1
Behrooz Masoumi
2
Mohammad Reza Keyvanpour
3
1- دانشگاه آزاد اسلامی واحد قزوین
2- دانشگاه آزاد اسلامی واحد قزوین
3- دانشگاه الزهرا(س)
کلمات کلیدی :
Suicide risk, Random forest, unbalanced data, Classification
چکیده :
Suicide is one of the major concerns of public health. Studies indicate the increasing prevalence of suicide, especially among adolescents. The risk factors of suicide include biological, psychological, clinical, social, and environmental factors. Involvement of various risk factors in suicide means that suicide risk in an individual is challenging; thus, to identify high-risk groups in public, a suicide risk prediction model is necessary. Today, employing machine learning and classification methods are widely used to predict suicide risk. One of the challenges of this context is unbalanced data that affect the efficiency of the prediction model. In this paper, two sampling methods are proposed to improve the performance of classifying unbalanced data, aiming to evaluate suicide risk in adolescents. In the proposed method, after balancing the dataset using sampling methods, the data is classified using random forest. The results show that the total accuracy of predicting suicide in adolescents is 0.99, with a sensitivity of 1 and specificity of 0.98. Therefore, the random forest model can predict suicide risk with high accuracy.
لیست مقالات
لیست مقالات بایگانی شده
SPA Bot: Smart Price-Action Trading Bot for Cryptocurency Market
Dr Hamid Jazayeriy - Mohammad Daryani
خوشه بندی مقید داده ها به کمک اتوماتای یادگیر سلولی
شکوفه علی محمدی - احمدعلی آبین
یک روش انتخاب ویژگی نیمهنظارتی جدید بر اساس منظمسازی هسین
دکتر راضیه شیخ پور راضیه شیخ پور -
Classification of mental states of human concentration based on EEG signal
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Dr Masoud Shafiee
Improving Training Stability in Variational Autoencoders Through the Integration of Score Matching Loss
Amirreza Mokhtari Rad - Pouya Ardehkhani - Hormehr Alborzi
Face Recognition Based on Local Statistical Features and Artificial Neural Network
Mehdi Moghimi - Dr Hadi Grailu
بررسی کارآمدی فناوری وب 0.2 در پشتیبانی از فرآیندهای انسان محور و دانش مبنا
سید احسان ملیحی - فاطمه مشایخی کردکلا
Integration of Electric Vehicles in Smart Grid using Deep Reinforcement Learning
Farkhondeh Kiaee
SecVanet: provably secure authentication protocol for sending emergency events in VANET
Seyed Amir Mousavi - Mohammad Sadeq Sirjani - Seyyed Javad Bozorg zadeh Razavi - Morteza Nikooghadam
A Novel Resource Allocation Scheme for Underlaying NOMA-Based Multi-Channel Cognitive D2D Communications
Anahita Akbari - Dr Javad Zeraatkar Moghaddam - Dr Mehrdad Ardebilipour
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1