0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
User Preferences Elicitation in Bilateral Automated Negotiation Using Recursive Least Square Estimation
نویسندگان :
Farnaz Salmanian
1
Hamid Jazayeri
2
Javad Kazemitabar
3
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
3- دانشگاه صنعتی نوشیروانی بابل
کلمات کلیدی :
Automated Bilateral Negotiation, Preferences Learning, Uncertain Information, Recursive Least Square Method
چکیده :
The negotiating agents are trying to reach a quality agreement during the process of automated negotiation. While each agent tries to improve its own utility, the agreement yields when the opponent reach in an acceptable utility as well. Therefore, learning the opponent’s preference during the negotiation is a challenging area of research. The opponent preferences modeled by two parameter vectors: the importance of negotiation issues, and the scoring value of each negotiation issue. In this study, the opponent model is updated by using an incremental recursive least square estimator. As time passes, the estimator reaches calculates the more accurate outcomes. By examining different negotiation domains, the computational experiments show the proposed method outperforms the recent studies.
لیست مقالات
لیست مقالات بایگانی شده
AI-based Secure Intrusion Detection Framework for Digital Twin-enabled Critical Infrastructure
Tanisha Patel - Nilesh Kumar Jadav - Tejal Rathod - Sudeep Tanwar - Deepak Garg - Hossein Shahinzadeh
AI-Powered Beauty Insights: Sentiment Analysis in a Low-Resource Language
Sajedeh Talebi - Neda Abdolvand - Fatemeh Mahdian
شکلدهی سه بعدی پرتو و بهبود نرخ امن در شبکههای مخابراتی بیسیم-تواندادهشده مبتنی بر صفحات بازتابی هوشمند
کوثر انصاری - دکتر مهدی مجیدی
Optimal selection of seed nodes by reducing the influence of common nodes in the influence maximization problem
Farzaneh Kazemzadeh - Ali Asghar Safaei - Mitra Mirzarezaee
Dealing with Black-hole Attacks in Inter-vehicle Networks Using the Packet Delivery Rate Algorithm
Marzieh Sedighi - Mehdi Hamidkhani - Mostafa Sadeghi
Comparative Study of Deep Reinforcement Learning and Genetic Algorithm Approaches for IoT Machine Learning Job Deployment in Fog Computing
Amir Moazeni - Omid Bushehrian
Simulanteus Load Balancing of Servers and Controllers in SDN-based IoMT
Somaye Imanpour - Ahmadreza Montazerolghaem - Saeed Afahari
ارائه مدل هشت مولفه ای استراتژی جامع هوش مصنوعی سازمانی
محمد کاظم صیادی - نیلوفر مرادحاصل - علیرضا یاری
Intent-Based Classification of Multi-Stage Cyber Attacks Using Attacker TTPs and Machine Learning
Fatemeh Imanimehr - Hamed Ebrahimi
Improving Personalized Federated Learning-based QoE Assessment using Clustering
Skokufe Motaharipour - Behrouz Shahgholi Ghahfarokhi - Saeid Afshari
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2