0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Comparative Study of Deep Reinforcement Learning and Genetic Algorithm Approaches for IoT Machine Learning Job Deployment in Fog Computing
نویسندگان :
Amir Moazeni
1
Omid Bushehrian
2
1- دانشگاه صنعتی شیراز
2- دانشگاه صنعتی شیراز
کلمات کلیدی :
Smart City،Cloud-Edge Computing،IoT Task Scheduling،DDPG،MILP،Federated Learning
چکیده :
The growing adoption of federated learning (FL) in Internet of Things (IoT) applications demands efficient and scalable task deployment across heterogeneous cloud–fog infrastructures. This work conducts a unified comparative study of six representative approaches—Deep Deterministic Policy Gradient (DDPG), DDPG Greedy, Genetic Algorithm (GA), Integer Linear Programming (ILP), Edge IoT, and Cloud IoT—classified into online and offline optimization methods. The evaluation is performed on an FL application using an LSTM model trained over multi site meteorological datasets, measuring deployment latency, execution cost, and adaptability under dynamic workloads. Results show that DDPG achieves an effective trade off, reducing cost by up to 18% compared to GA while maintaining sub second placement latency. ILP yields the lowest overall cost but lacks adaptability for real time environments, whereas heuristic baselines reveal the latency–cost balance between decentralized edge processing and centralized cloud execution. The findings provide quantitative guidance for selecting task deployment strategies in large scale smart city FL scenarios.
لیست مقالات
لیست مقالات بایگانی شده
ارائه یک مدل جهت تخصیص منابع به توابع مجازی شبکه (VNF) باهدف حفظ درجه تعادل بار در شبکه های چند دامنه ای مبتنی بر نرمافزار(multi-SDN)
امین زنداقطاعی - دکتر وحید ستاری نائینی امین زنداقطاعی - وحید ستاری نائینی -
Using Deconvolutional Variational Autoencoder for Answer Selection in Community Question Answering
Golshan Afzali Boroujeni - Heshaam Faili
Adaptive Semantic Communication for Non-Terrestrial Networks
Soroosh Miri - Sepehr Abolhasani - S. Mohammad Razavizadeh
COVID-19 Image Retrieval Using Siamese Deep Neural Network and Hashing Technique
Farsad Zamani Boroujeni - Doryaneh Hossein Afshari - Fatemeh Mahmoodi
Energy–Aware Clustering Routing Protocol to Improve the Multi-hop WSN Lifetime
Alireza Gholamrezaee - Hoda Gholamrezaee - Mahtab Hadiyan
Spatial On–Off Keying Modulation with Mirror-Array Optical IRSs for Indoor Machine-to-Machine Visible Light Communication
Babak Sadeghi - Seyed Mohammad Sajad Sadough
An Efficient Link Prediction Method using Community Structures
Dr Hadi Shakibian - Setareh Mokhtari
پیش بینی بیماری قلبی با استفاده از روش تحلیل شبکه ای
هدیه مشتاقی محمدزاده - فاطمه باقری
UltraLearn: Next-Generation CyberSecurity Learning Platform
Saeed Raisi - Saeid Ghasemshirazi - Ghazaleh Shirvani
Writer-Independent Signature Verification with Enhanced AlexNet and Preprocessing Analysis
Mohammadreza Gholipour Shahraki - Mohammad Ghasemzadeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2