0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Persian deaf sign language recognition system using deep learning
نویسندگان :
Mohammad Ebrahimi
1
1- دانشگاه آزاد اسلامی واحد هرند (اصفهان)
کلمات کلیدی :
Deep learning،Machine vision،Dynamic programming،Sign language،Tracking
چکیده :
Vision based communicating with compare of speech-based communicating is more complex and meaningful. Direct communication between deaf and other people is very difficult, so there are attempts for making a sign language interpreting system. Deep learning uses linear and nonlinear transformations to model the concepts in the data hierarchically. Deep learning also learns long time dependencies in sequential frames. A deep network has been created that has trained 14 words, and recognizes that words with its speed during playback. In this paper, data are given to two distinct systems and the results are compared with each other. The first system consists of three basic stages of hand and head tracking, feature extraction, and finally identification. Dynamic programming is used for tracking, that it is very timely. Right hand tracking is an important step. Possibility of placing two hands together causes the tracking system to be erroneous and occlusion. Dynamic algorithm, for hand tracking, has been explained. Difference frames has been used as score function and movement between two frame times has been used for penalty function in dynamic programming. Experiments from deaf news, has been tested, and well able to track right hand. The second system is a deep learning network with multiple layers that recognizes sign language word in a much higher speed than the first system.
لیست مقالات
لیست مقالات بایگانی شده
Classification of mental states of human concentration based on EEG signal
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Dr Masoud Shafiee
Generalized Self-Attentive Spatiotemporal GCN with OPTICS Clustering for Recommendation Systems
Saba Zolfaghari - Seyed Mohammad Hossein Hasheminejad
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
Sustainability analysis and improvement of model driven engineering and model transformation languages
Kevin Lano - Shekoufeh Kolahdouz Rahimi
طبقه بندی روش های شناسایی داده های تکراری در جهت تسهیل فرایند پاکسازی داده ها
مهدی جعفری - احمد عبدالله زاده بار فروش
NFV-Based Distributed Service Function Chaining with Imperfect Information
Mahsa Alikhani - Marzieh Sheikhi - Dr Vesal Hakami
ارائه راهکاری جهت مقابله با حملات DoS در شبکه های نرم افزارمحور
ویدا هاشمی - احمد بختیاری شهری - رضا جاویدان
رویکردی در تشخیص خودکار بوهای بد در مدل های معماری سازمانی با استفاده از تحلیل گرافی
زهرا رحیمی تمندگانی - شهره آجودانیان
Target-driven Navigation of a Mobile Robot using an End-to-end Deep Learning Approach
Mohammad Matin Hosni - Ali Kheiri - Esmaeil Najafi
Enhancing Employee Promotion Prediction with a Novel Hybrid Model Integrating Convolutional Neural Networks and Random Forest
Pouya Ardehkhani - Seyyed Reza Moslemi - Hanieh Hooshmand
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2