0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Mathematical Optimization Approach for Preference Learning in Movie Recommender Systems with Shared Accounts
نویسندگان :
Milad Khademali
1
Fazlollah Aghamohammadi
2
Marjan Kaedi
3
Alireza Nasiri
4
1- University of Hormozgan
2- University of Hormozgan
3- University of Isfahan
4- University of Hormozgan
کلمات کلیدی :
Movie Recommender System،Convex Optimization،Preference Learning،Shared Account problem
چکیده :
A recommender system assumes that each row of the user-item rating matrix represents a single user preference. However, one account is usually shared among household members, and thus, the ratings data of users in such accounts will be mixed. Consequently, recommendations would severely fail to follow each user's preferences. To solve this problem, we leverage the correspondence of movie and user features from media research and coin a user character concept, a common latent factor in movie and account features. After establishing the movie feature matrix in the character representation, we can identify the presence of different characters in each account by factoring out the account feature binary matrix from the rating matrix. Minimizing the estimation error of a given mixed data matrix leads to a binary quadratic optimization model. Considering scalability, we relax the binary constraint, approximate the solutions to a convex problem, and solve the model via a modified gradient descent algorithm. Finally, based on the identified characters in each account, the preferences will be learned by reconstructing the rating matrix so that each row represents a single user preference. Furthermore, a shared account dataset was generated from MovieLens ratings based on CAMRa2011 to evaluate the method. Experiments on this dataset demonstrate the efficiency of our proposed method.
لیست مقالات
لیست مقالات بایگانی شده
Improving hypergraph attention and hypergraph convolution networks
Mustafa Mohammadi Gharasuie - Mahmood Shabankhah - Ali Kamandi
A High-Speed Quantum Reversible Controlled Adder/Subtractor Circuit
Negin Mashayekhi - Mohammad Reza Reshadinezhad - Shekoofeh Moghimi
Silicon photonic microring resonators: A Novel optical router based on Negative-First routing algorithm
Negin Bagheri Renani - Elham Yaghoubi
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Amirhossein Molazadeh - Zahra Maroufi - Mehrdad Ardebilipour
پیشبینی حجم ترافیک شهری با استفاده از دادههای سرویس نشان مورد مطالعاتی: خیابان کمال اصفهان
مهسا لطیفی - جمشید مالکی
طبقه بندی آسیبهای لیگامنت با استفاده از تحلیل تصاویر تشدید مغناطیسی توسط الگوریتمهای یادگیری عمیق
محسن اکبری - دکتر مریم مؤمنی محسن اکبری - مریم مؤمنی -
Persian Language Understanding in Task-oriented Dialogue System for Online Shopping
Zeinab Borhanifard - Hossein Basafa - Seyedeh Zahra Razavi - Heshaam Faili
Enhancing Software Effort Estimation with an Integrated Approach of Particle Swarm Optimization and Genetic Algorithms in Analogy-based Method
Ehsan Nasr - Keyvan Mohebbi
ارائه مدل یادگیری ماشین برای پیشبینی سریزمانی باینری از دیدگاه مسئلههای دستهبندی با کاربرد در پیشبینی نتهای موسیقی
نیلوفر ع��دلخانی - حسام عمرانپور
A perceptual loss for screen content image super-resolution
Hossein Sekhavaty-Moghadam - Marzieh Hosseinkhani - Dr Azadeh Mansouri
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2