0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Drug-Target Interaction Prediction Using Enhanced Feature Selection
نویسندگان :
Maryam Taheri
1
Mohammad Reza Keyvanpour
2
Mohadeseh Saadat Mousavi
3
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
3- دانشگاه الزهرا(س)
کلمات کلیدی :
drug-target interaction،feature selection،random forest،data balancing،decision tree،Borderline-SMOTE
چکیده :
A deep understanding of drug-target interaction (DTI) mechanisms is essential for the design of effective and safe drugs. While traditional wet lab experiments play a critical role, they are often associated with significant time and financial investments. Therefore, computational methods based on interaction prediction can significantly reduce the search space for the mentioned experiments. This paper outlines an innovative multistage approach for the prediction of DTI. Feature vectors, comprising various descriptors and the drug-encoded FP2 fingerprint, are extracted from protein sequences and drug structures in the first step. Protein sequences and drug structures are initially processed to extract feature vectors, including various descriptors and the drug-encoded FP2 fingerprint. One major obstacle in this field is the data imbalance caused by the limited number of known interactions. The FFS-RF-DT algorithm, a powerful combination of forward feature selection, random forest and decision tree classification, is subsequently used to optimize predictive performance. This effectively eliminates irrelevant features, resulting in a more focused and efficient model. At the final stage, the XGBoost classifier processes the balanced dataset containing the optimal features to predict DTIs, yielding new drug-target interactions. The proposed model demonstrated better performance, achieving an accuracy of 96.96%, representing a 5.5% improvement over other models. In addition to its superior classification performance, the proposed model exhibits a much lower time complexity than comparable models. This makes it a promising candidate for DTI applications. چکیده- درک عمیق مکانیسمهای تعامل دارو-هدف (DTI) برای طراحی داروهای مؤثر و ایمن ضروری است. در حالی که آزمایش های آزمایشگاهی مرطوب سنتی نقش مهمی ایفا می کنند، اغلب با سرمایه گذاری های زمانی و مالی قابل توجهی همراه هستند. بنابراین، روشهای محاسباتی مبتنی بر پیشبینی تعامل میتواند فضای جستجوی موارد ذکر شده را به میزان قابل توجهی کاهش دهد آزمایشات این مقاله یک رویکرد چند مرحله ای ابتکاری را برای پیش بینی DTI ترسیم می کند. بردارهای ویژگی، شامل توصیفگرهای مختلف و اثر انگشت FP2 کدگذاری شده با دارو، در مرحله اول از توالی پروتئین و ساختارهای دارویی استخراج میشوند. توالی های پروتئینی و ساختارهای دارویی در ابتدا برای استخراج بردارهای ویژگی، از جمله توصیفگرهای مختلف و اثر انگشت FP2 رمزگذاری شده با دارو، پردازش می شوند. یکی از موانع اصلی در این زمینه داده ها است عدم تعادل ناشی از تعداد محدودی از تعاملات شناخته شده. الگوریتم FFS-RF-DT، ترکیبی قدرتمند از انتخاب ویژگی رو به جلو و درخت تصمیم گیری تصادفی پیش بینی، طبقه بندی، متعاقباً برای بهینه سازی عملکرد پیش بینی استفاده می شود. این به طور موثر ویژگی های نامربوط را حذف می کند و در نتیجه یک مدل متمرکزتر و کارآمدتر ایجاد می کند. در مرحله نهایی، طبقهبندیکننده XGBoost مجموعه دادههای متعادل حاوی ویژگیهای بهینه را برای پیشبینی DTI پردازش میکند، و تعاملات دارویی-هدف جدیدی را ایجاد میکند. پیشنهادی مدل عملکرد بهتری را نشان داد و به دقت 96.96 درصد رسید که نشان دهنده بهبود 5.5 درصدی نسبت به سایر مدل ها است. علاوه بر عملکرد طبقهبندی برتر، مدل پیشنهادی پیچیدگی زمانی بسیار پایینتری نسبت به مدلهای قابل مقایسه نشان میدهد. این آن را به یک نامزد امیدوار کننده برای برنامه های DTI تبدیل می کند.
لیست مقالات
لیست مقالات بایگانی شده
3D Mesh ONoC: Design of low Insertion Loss and Non-blocking Optical Router and Efficient Routing Algorithm
Sanaz Asadinia - Elham Yaghoubi - Mostafa Sadeghi - Mahdi Mehrabi
ارائه یک مدل تصمیم گیری چند معیاره فازی به منظور بهبود دقت فرایند تصمیم گیری به هنگام اختلال هوانوردی
فاطمه عطا عبدالرزاق - نگار مجمع
رویکردی در تشخیص خودکار بوهای بد در مدل های معماری سازمانی با استفاده از تحلیل گرافی
زهرا رحیمی تمندگانی - شهره آجودانیان
An OWA-Powered Dynamic Customer Churn Modeling in the banking industry Based on Customer Behavioral Vectors
Masoud Alizadeh - Mohammad Soleymannejad - Behzad Moshiri
Generalized Self-Attentive Spatiotemporal GCN with OPTICS Clustering for Recommendation Systems
Saba Zolfaghari - Seyed Mohammad Hossein Hasheminejad
Embedded speech encoder for low-resource languages
Alireza A.Tabatabaei - Pouria Sameti - Ali Bohlooli
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Hadi Rezaeikarjani - Mojtaba Valinataj
Fast Duplicate Bug Reports Detector Training using Sampling for Dimension Reduction
Behzad Soleimani Neysiani - Saeed Doostali - Seyed Morteza Babamir - Zahra Aminoroaya
A Potential Solutions-Based Parallelized GA for Application Graph Mapping in Reconfigurable Hardware
Seyed Mehdi Mohtavipour - Hadi Shahriar Shahhoseini
A Fuzzy Cluster-Based Routing Algorithm to Extend Wireless Sensor Network Lifetime
Mostafa Mirzaie - Armin Mazinani - Dr Sayyed Majid Mazinani
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1