0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Epileptic Seizure Detection based on Statistical and Wavelet Features and Siamese Network
نویسندگان :
Zahra Hossein-Nejad
1
Mehdi Nasri
2
1- دانشگاه آزاد اسلامی واحد سیرجان
2- دانشگاه آزاد اسلامی واحد خمینی شهر
کلمات کلیدی :
Diagnosis of Epilepsy،Electroencephalogram signal،Feature selection،Siamese Network
چکیده :
Epilepsy can be defined, according to the World Health Organization, as recurrent seizures related to physical reactions caused by a sudden discharge of electricity to a group of human brain cells. Electroencephalogram (EEG) signals play a very important role in the diagnosis of this disease. The recording of EEG signals recorded by mobile recording devices produces very long information that the detection of the epileptic area requires a long time for the expert to analyze all the information. Traditional methods of analysis are tedious, which is why in recent years there have been so many automated systems for diagnosing epilepsy. In this article, a new approach to the diagnosis of epilepsy is presented. First, the preprocessing process is applied to the EEG signals and the signal is decomposed into ten sub-signals using an experimental wavelet transform. Then, the best features are selected using the proposed method of analysis of variance. Then, using the Siamese network to reduce the dimensions of the feature vector in improving the performance of seizure detection. Finally, the support vector machine (SVM) algorithm uses these features to classify convulsive and non-convulsive EEG signals. The simulation results show that the proposed method of the paper using the EEG signal dataset of the University of Bonn has resulted in 99.30 accuracy and this method can effectively help physicians in diagnosing epilepsy, thus reducing their workload.
لیست مقالات
لیست مقالات بایگانی شده
حفظ حریم خصوصی در انتشار نسخه های متوالی دادههای شبکه اجتماعی با امکان افزایش یال
طاهره سرزهی - دکتر مهری رجایی طاهره سرزهی - مهری رجایی -
IoMT-Enabled Smart Healthcare: State-of-the-Art, Security and Future Directions
Shivam Tripathi - Vatsalkumar Makwana - Malaram Kumhar - Harshal Trivedi - Jitendra Bhatia - Sudeep Tanwar - Hossein Shahinzadeh
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
Multi-label Classification of Steel Surface Defects Using Transfer Learning and Vision Transformer
Amirhossein Komijani - Farzaneh Vafaeinezhad - Javad Khoramdel - Yasamin Borhani - Esmaeil Najafi
Improving hypergraph attention and hypergraph convolution networks
Mustafa Mohammadi Gharasuie - Mahmood Shabankhah - Ali Kamandi
Web Service Ranking based on QoS and Use Prefer
Seyed Hossein Siadat - Danial Ramezani - Fatemeh Ahani
A High-Speed Quantum Reversible Controlled Adder/Subtractor Circuit
Negin Mashayekhi - Mohammad Reza Reshadinezhad - Shekoofeh Moghimi
Information Technology Risk Management Model for Remote Control Vehicles
Hamid Reza Naji - Aref Ayati
آرتمیا: پروتکل مسیریابی مبتنی بر انجمن و آگاه به نظم تماس در شبکة اجتماعی متحرک تأخیرپذیر
سعید مرادی - جمشید باقرزاده محاسفی
ارائه یک رویکرد معنایی مبتنی بر آنتولوژی به منظور شناسایی تاکتیکهای معماری
احسان شریفی - دکتر احمد عبدالله زاده بارفروش
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1