0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Epileptic Seizure Detection based on Statistical and Wavelet Features and Siamese Network
نویسندگان :
Zahra Hossein-Nejad
1
Mehdi Nasri
2
1- دانشگاه آزاد اسلامی واحد سیرجان
2- دانشگاه آزاد اسلامی واحد خمینی شهر
کلمات کلیدی :
Diagnosis of Epilepsy،Electroencephalogram signal،Feature selection،Siamese Network
چکیده :
Epilepsy can be defined, according to the World Health Organization, as recurrent seizures related to physical reactions caused by a sudden discharge of electricity to a group of human brain cells. Electroencephalogram (EEG) signals play a very important role in the diagnosis of this disease. The recording of EEG signals recorded by mobile recording devices produces very long information that the detection of the epileptic area requires a long time for the expert to analyze all the information. Traditional methods of analysis are tedious, which is why in recent years there have been so many automated systems for diagnosing epilepsy. In this article, a new approach to the diagnosis of epilepsy is presented. First, the preprocessing process is applied to the EEG signals and the signal is decomposed into ten sub-signals using an experimental wavelet transform. Then, the best features are selected using the proposed method of analysis of variance. Then, using the Siamese network to reduce the dimensions of the feature vector in improving the performance of seizure detection. Finally, the support vector machine (SVM) algorithm uses these features to classify convulsive and non-convulsive EEG signals. The simulation results show that the proposed method of the paper using the EEG signal dataset of the University of Bonn has resulted in 99.30 accuracy and this method can effectively help physicians in diagnosing epilepsy, thus reducing their workload.
لیست مقالات
لیست مقالات بایگانی شده
Recommendation Systems in Smart Agriculture: Pathway to a well-designed system
Ahmad Nameni - Amir Ghafarian Daneshmand - Omid Mahdi Ebadati E
A Hybrid Crow Search and Penguin Optimization Algorithm (CPMM) for Efficient Cloud Workflow Scheduling
Reza Akraminejad - Farhad Kazemipour - Mozhdeh Koreh Davoodi
Short-Term Traffic Flow Prediction Based on a Recurrent Deep Neural Networks: Study in Tehran
Dr Monireh عبدوس - Taha Vajed Samei
An Eco-Friendly Cosmopolitan (EFC) by Recycling Scientific/Industrial Towns (RSITs)
Engineer Reza Khalilian - Dr. Abdalhossein Rezai - Dr. Mohammadreza Talakesh
A Demand Response Schema in Industry: Smart Scheduling Approach for Industrial Processes
Negin Shafinezhad - Hamid Abrishami - Maryam Mahmoodi
PersianRAG A Retrieval Augmented Generation System for Persian Language
Hossein Hosseini - Mohammad Sobhan Zare - Amir Hossein Mohammadi - Arefeh Kazemi - Zahra Zojaji - Mohammad Ali Nematbakhsh
Wireless Virtual-Reality by considering Hybrid Beamforming in IEEE802.11ay standard
Nasim Alikhani - Abbas Mohammadi
بیشینهسازی تأثیر در شبکههای اجتماعی بر اساس فعالیت کاربران
فاطمه جعفری - علیرضا رضوانیان
Towards Provable Privacy Protection in IoT-Health Applications
Samane Sobuti - دکتر سیاوش خرسندی
Simulanteus Load Balancing of Servers and Controllers in SDN-based IoMT
Somaye Imanpour - Ahmadreza Montazerolghaem - Saeed Afahari
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2