0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Demand Response Schema in Industry: Smart Scheduling Approach for Industrial Processes
Authors :
Negin Shafinezhad
1
Hamid Abrishami
2
Maryam Mahmoodi
3
1- Ferdowsi University of Mashhad
2- Ferdowsi University of Mashhad
3- Ferdowsi University of Mashhad
Keywords :
Smart grid،demand response،manufacturing processes،energy-aware scheduling،peak demand،energy cost
Abstract :
The manufacturing sector is recognized as the largest energy consumer within the smart grid. Excessive energy usage in production lines poses significant challenges, such as increased peak demand, high energy costs, strained grid resources, and power outages. Implementing demand response programs can address these issues and provide reliable and stable power to customers. Additionally, the integration of renewable energy sources can notably reduce carbon emissions and support sustainability objectives. To enhance efficiency, scheduling and intelligent manufacturing techniques can shift the execution time of production processes to off-peak periods and adjust consumption patterns on the production line. In this study, we propose a method called Scheduling for Industrial Processes to modify Energy consumption behavior (SIPE) under specified deadlines. SIPE offers economic benefits through an energy storage system for industrial customers participating in demand response programs. Moreover, it modulates energy consumption based on a maximum negotiated energy cost, which is determined as the highest allowable energy consumption cost within a defined scheduling period between the power provider and industrial customers. The proposed approach coordinates processes based on their durations and defined constraints. To evaluate the effectiveness of this approach, we selected Additive Manufacturing, as it is one of the most energy-intensive industries and is used across various manufacturing fields. We conducted numerous experiments by varying production parameters in the manufacturing line and compared the results with state-of-the-art approaches. The performance evaluation results demonstrate a significant reduction in both energy costs and power demand specially during peak periods.
Papers List
List of archived papers
Evaluation of Machine Learning Models in Persian Text Classification for Depression Detection with Improved Feature Selection
Rasool TayebMoghadam - Amirhossein Damia - Hadi Bahrampoor - Maryam Zarghani
A Novel Resource Allocation Scheme for Underlaying NOMA-Based Multi-Channel Cognitive D2D Communications
Anahita Akbari - Dr Javad Zeraatkar Moghaddam - Dr Mehrdad Ardebilipour
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
مکانیابی بهینه آلودگی در شبکههای توزیع آب با استفاده از تکنولوژی اینترنت اشیاء بر مبنای پیشبینی سری زمانی چند متغیره
زینب محزون - امید بوشهریان
طبقه بندی روش های شناسایی داده های تکراری در جهت تسهیل فرایند پاکسازی داده ها
مهدی جعفری - احمد عبدالله زاده بار فروش
تاثیر مدیریت دانش مشتری بر توسعه محصول جدید و نوآورانه با رویکرد مدل سازی معادلات ساختاری با استفاده از حداقل مربعات جزئی: مطالعۀ موردی شرکت کاله
دکتر آرش خسروی - سیده فاطمه حسینی - دکتر مرتضی رجب زاده آرش خسروی - سیده فاطمه حسینی - مرتضی رجب زاده -
مدل یادگیری عمیق با بازنمایی چند مقیاسی زمان برای پیشبینی آبشار اطلاعاتی در شبکههای اجتماعی
مبینا پناهی - مهدی عمادی
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
Dr Mahila Dadfarnia - Ali Alemi Matinpour - Dr Monireh Abdoos
Designing an AI-assisted toolbox for fitness activity recognition based on deep CNN
Ali Bidaran - Dr Saeed Sharifian
Evaluating LLMs in Persian News Summarization
Arya VarastehNezhad - Reza Tavasoli - Mostafa Masumi - Seyed Soroush Majd - Mehrnoush Shamsfard
more
Samin Hamayesh - Version 42.5.2