0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Authors :
Anita Karim Ghassabpour
1
Hatam Abdoli
2
Muharram Mansoorizadeh
3
Saeid Seyedi
4
1- دانشگاه بوعلی سینا
2- دانشگاه بوعلی سینا
3- دانشگاه بوعلی سینا
4- دانشگاه بوعلی سینا
Keywords :
Air Pollution،Particulate Matter،PM2.5،Machine Learning،Hamedan
Abstract :
Given that fine particles are one of the main origins of respiratory disorders, it is considered that PM2.5 is among the important contributors to air pollution and is a serious global health concern nowadays. This paper considers a new analytical approach for the prediction of PM2.5 concentration in Hamadan, Iran, with hopes of finding some ways to reduce the negative impacts of air pollution. During the last two years, the PM2.5 hourly data was gathered; they were preprocessed, and the outlier values were imputed using K-Nearest Neighbors techniques. To increase the accuracy, the estimation was improved by applying four machine learning models, namely, random forest, decision tree, support vector machine, and linear regression. Originality is represented by merging machine learning models with the time series model ARIMA. Thus, each model hybrid takes the strengths from all, giving a higher value of prediction of PM2.5 concentration. In this study many metrics such as MSE, RMSE, MAE, precision, and recall are applied for finding out the best model performance. Probably the most relevant outcome of our results is that the combination of linear regression and ARIMA returned a significant performance boost: MSE improved by 58%, while RMSE improved by 35%. This dramatic improvement underlines the predictive potential of hybrid models for air quality forecasting and forms a milestone in the study of PM2.5 prediction for the region.
Papers List
List of archived papers
تخلیهی باری وظایف اینترنت اشیاء بر روی مه محاسباتی با استفاده از الگوریتم حشره آبسوار
عفت تقی زاده بیلندی - آرش دلداری - علیرضا صالحان
Recommendation Systems in Smart Agriculture: Pathway to a well-designed system
Ahmad Nameni - Amir Ghafarian Daneshmand - Omid Mahdi Ebadati E
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
Mohammad Bahrami - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti - Sajjad Ansaria
Knowledge Extraction from Technical Reports Based on Large Language Models: An Exploratory Study
Parsa Bakhtiari - Hassan Bashiri - Alireza Khalilipour - Masoud Nasiripour - Moharram Challenger
Electrophysiological Modeling and Interactive Approaches of Electrical Circuits and Hypergraphs for Understanding Neural Circuit Dynamics
Arian Baymani - Maryam Naderi Soorki
Extending Interaction Flow Modeling Language as a Profile for Form-making Systems
Ghazaleh Shahin - Dr Bahman Zamani
شناسایی و تحلیل ظرفیتهای استفاده از فناوری هوش مصنوعی در توسعه و بهبود شاخص مشارکت الکترونیکی
فرشاد حکمی زاده - عاطفه فرازمند
Distributed Deep Reinforcement Learning for Energy-Efficient and Low-Latency Load Balancing in Mobile Edge Computing
Pooria Azizi - Siavash Khorsandi
AI-based Secure Intrusion Detection Framework for Digital Twin-enabled Critical Infrastructure
Tanisha Patel - Nilesh Kumar Jadav - Tejal Rathod - Sudeep Tanwar - Deepak Garg - Hossein Shahinzadeh
StockFM: پیش بینی قیمت بازار بورس ایران به کمک مدل بنیادین سری زمانی
فاطمه چیت ساز - سامان هراتی زاده
more
Samin Hamayesh - Version 42.5.2