0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Authors :
Anita Karim Ghassabpour
1
Hatam Abdoli
2
Muharram Mansoorizadeh
3
Saeid Seyedi
4
1- دانشگاه بوعلی سینا
2- دانشگاه بوعلی سینا
3- دانشگاه بوعلی سینا
4- دانشگاه بوعلی سینا
Keywords :
Air Pollution،Particulate Matter،PM2.5،Machine Learning،Hamedan
Abstract :
Given that fine particles are one of the main origins of respiratory disorders, it is considered that PM2.5 is among the important contributors to air pollution and is a serious global health concern nowadays. This paper considers a new analytical approach for the prediction of PM2.5 concentration in Hamadan, Iran, with hopes of finding some ways to reduce the negative impacts of air pollution. During the last two years, the PM2.5 hourly data was gathered; they were preprocessed, and the outlier values were imputed using K-Nearest Neighbors techniques. To increase the accuracy, the estimation was improved by applying four machine learning models, namely, random forest, decision tree, support vector machine, and linear regression. Originality is represented by merging machine learning models with the time series model ARIMA. Thus, each model hybrid takes the strengths from all, giving a higher value of prediction of PM2.5 concentration. In this study many metrics such as MSE, RMSE, MAE, precision, and recall are applied for finding out the best model performance. Probably the most relevant outcome of our results is that the combination of linear regression and ARIMA returned a significant performance boost: MSE improved by 58%, while RMSE improved by 35%. This dramatic improvement underlines the predictive potential of hybrid models for air quality forecasting and forms a milestone in the study of PM2.5 prediction for the region.
Papers List
List of archived papers
Using Deconvolutional Variational Autoencoder for Answer Selection in Community Question Answering
Golshan Afzali Boroujeni - Heshaam Faili
Non-Linear Control of Cancer Model, Considering the Drug Resistance Using Feedback Based Chemotherapy Approach
Danial Kiaei - Hami Tourajizadeh
A Hybrid Method to Reduce the Voltage Consumption in the Spiking Neural Networks
Shaghayegh Mehdizadeh saraj - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
NFV-Based Distributed Service Function Chaining with Imperfect Information
Mahsa Alikhani - Marzieh Sheikhi - Dr Vesal Hakami
Short-Term Traffic Flow Prediction Based on a Recurrent Deep Neural Networks: Study in Tehran
Dr Monireh عبدوس - Taha Vajed Samei
تحلیل سازههای موثر بر پذیرش فناوری بلاکچین و استفاده از آن در صنعت بیمه ایران با استفاده از تکنیک معادلات ساختاری (مطالعه موردی: شرکت کارگزاری رسمی بیمه زندگی خوب)
احسان هنری - آفرین اخوان
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Amirhossein Molazadeh - Zahra Maroufi - Mehrdad Ardebilipour
جایگذاری مقادیر ازدست رفته در داده های سری زمانی چندمتغیره برای پیش بینی مرگ ومیر بیماران با رویکرد یادگیری عمیق مبتنی بر مکانیسم توجه
سید علی هاشمی - سعید جلیلی
پیشبینی بستری مجدد بیماران با استفاده از استخراج مفاهیم زیستپزشکی از متون بالینی
فهیمه شاهرخ شهرکی - رسول سامانی - دکتر ناصر قدیری فهیمه شاهرخ شهرکی - رسول سامانی - ناصر قدیری -
AOV-IDS: Arithmetic Optimizer with Voting classifier for Intrusion Detection System
Amir Soltany Mahboob - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
more
Samin Hamayesh - Version 42.0.3