0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
An LLM-Based Approach for Clarifying the Decisions of Vision Models in Autonomous Vehicles
نویسندگان :
Omid Mosalmani
1
Mohammad Javad Rashti
2
Seyed Enayat Alavi
3
1- دانشگاه شهید چمران اهواز
2- دانشگاه شهید چمران اهواز
3- دانشگاه شهید چمران اهواز
کلمات کلیدی :
Explainable AI،Prompt Engineering،Large Language Models،Autonomous Vehicles،Textual Explanation
چکیده :
With the increasing utilization of autonomous vehicles, the transparency and explainability of their decisions have become crucial for gaining user trust and enhancing road safety. Current textual explanation methods rely on limited datasets, leading to repetitive and superficial explanations. This research presents a hybrid system where the ADAPT decision-making model is used to predict driving actions, and its attention maps serve as an interface between visual data and the explanation module. Subsequently, large language models, from the Gemini and GPT families, receive the final decision, the attention map, and a carefully designed prompt to generate concise and understandable textual explanations. The primary innovation of this approach lies in combining the decision-making model with LLMs, leveraging their extensive knowledge beyond the constraints of training data to enable the generation of more precise and diverse explanations. The system is evaluated on the BDD-X dataset and measured against standard captioning metrics including BLEU-4, METEOR, ROUGE-L, CIDEr-D, and SPICE. The evaluation results indicate the superiority of explanation outputs in our system, compared to the baseline ADAPT, particularly in multi-reference scenarios, providing more fluent and contextually rich explanations. For instance, the output acquired from Gemini 2.5 Pro model achieves a METEOR score of approximately 19.45, a significant improvement of about 28 percent compared to 15.2 for ADAPT. Furthermore, supplementary experiments show that using a contour representation of the attention map and fine-tuning the models lead to increased visual-textual consistency and result stability. In summary, by linking the visual attention of the decision-making model to the linguistic capabilities of LLMs, this research takes a step toward developing more explainable and trustworthy autonomous vehicles.
لیست مقالات
لیست مقالات بایگانی شده
Low-Power Phase-Based Stochastic MAC for FPGA
Kooroush Manochehri - Amir arsalan Sakhtianchi - Mehrshad Khosraviani
طرحی برای تبدیل نمودارهای رفتاری BPMN به نمودار UML و تولید کد از آن
مهدیس صفری - احمد عبدالله زاده بارفروش
Design of low-latency Floating-Point units for Softmax Computation in Transformer-based Large Language Models
Hoda Ghabeli - Amir Sabbagh Molahosseini
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
سیستم توصیه گر برای خرید لوازم آرایشی و بهداشتی مبتنی بر الگوریتم جنگل تصادفی
فاطمه رمضانی خوزستانی - مجید رفیعی
A Novel Decentralized Privacy Preserving Federated Learning Model for Healthcare Applications
Saba Ameri - Reza Ebrahimi Atani
پیاده سازی موازی یک طرح (t,n)-تسهیم چند تصویر با استفاده از GPU
سعیده کبیری راد
استخراج موارد آزمون سطح برونمتد و درونکلاس از برنامههای شئگرا
محمد قرشی - حسن حقیقی
هوشمندسازی پایش کیفیت رنگزنی داخلی گرین تایر و تحلیل داده برای بهینه سازی عمر بلادر، مصرف رنگ و ریشه یابی عیوب پخت
سامان ثنایی - رضا رحیمی
ISAAF: بهبود چارچوب مجوز خودتطبیق SAAF با استفاده از پیادهسازی مبتنی بر عامل و مفهوم I-Shairing
الهام معین الدینی - دکتر منیره عبدوس - دکتر اسلام ناظمی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2