0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Architectural Insights: Comparing Weight Stationary and Output Stationary Systolic Arrays for Efficient Computation
نویسندگان :
Mahdi Kalbasi
1
1- University of Isfahan
کلمات کلیدی :
Systolic arrays،Convolutional Neural Networks،Output stationary،Weight stationary
چکیده :
This paper compares two prevalent architectures in systolic arrays: weight stationary and output stationary methods. Systolic arrays utilize interconnected processing elements (PEs) to perform parallel processing, making them suitable for applications in digital signal processing, image processing, and machine learning. We focus on their implementation of 2D matrix multiplication, a fundamental operation in neural networks. Simulations were conducted using Verilog HDL within the Xilinx Vivado Design Suite 2019, employing a 3x1 input matrix and a 3x3 weight matrix. Results confirmed the functionality of both architectures, with output matrices matching expected results. Weight stationary designs minimized data movement, while output stationary designs enhanced throughput through effective input data reuse. With a critical path delay of approximately 8.8 ns, corresponding to a maximum frequency of about 113 MHz, the study highlights that the critical path remains stable when scaling the number of PEs. Overall, this research validates the effectiveness of both architectures in high-performance matrix operations, offering valuable insights for future systolic array designs.
لیست مقالات
لیست مقالات بایگانی شده
COVID-19 Image Retrieval Using Siamese Deep Neural Network and Hashing Technique
Farsad Zamani Boroujeni - Doryaneh Hossein Afshari - Fatemeh Mahmoodi
تشخیص حمله تزریق داده کاذب با روش OCD در شبکه هوشمند برق
محدثه جلیلی سنجرانی - سعید جلیلی - محمدکاظم شیخ الاسلامی
بهبود دقت و کارایی در شبکههای عصبی کانولوشنی با استفاده از روشهای محاسبات تقریبی
محمدرضا رفیعی نژاد - محمدرضا بینش مروستی - سید امیر اصغری
Statistical Disorder Parameters Computing For Hyperspectral Image Anomaly Detection
Dr Maryam Imani
A Novel Decentralized Privacy Preserving Federated Learning Model for Healthcare Applications
Saba Ameri - Reza Ebrahimi Atani
Target-driven Navigation of a Mobile Robot using an End-to-end Deep Learning Approach
Mohammad Matin Hosni - Ali Kheiri - Esmaeil Najafi
BMPA- DSL: Binary Marine Predators Algorithm to Identify Driver's Different Levels of Stress
Mahtab Vaezi - Mehdi Nasri - Farhad Azimifar - Mahdi Mosleh
Mode Selection and Resource Allocation in D2D-Enabled MC-NOMA using Matching Theory
Alireza Gholamrezaee - Hamid Farrokhi - Javad Zeraatkar Moghaddam
Experimental analysis of automated negotiation agents in modeling Gaussian bidders
Fatemeh Hassanvand - Dr Faria Nassiri-Mofakham
A Survey on Utilizing Reinforcement Learning in Wireless Sensor Networks Routing Protocols
Ali Forghani Elah Abadi - Seyedeh Elham Asghari - Sepideh Sharifani - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2