0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A No-Code Platform for Developing Customizable Recommender Systems for Restaurants
نویسندگان :
Moein-Aldin AliHosseini
1
MohammadReza Sharbaf
2
1- دانشگاه اصفهان
2- دانشگاه اصفهان
کلمات کلیدی :
Model-Driven Development،No-Code Platforms،Electronic Commerce،Recommender Systems
چکیده :
Abstract—With the rapid growth of e-commerce and the increasing importance of recommender systems in enhancing customer experience, there is a pressing need for customized systems that can be quickly developed in collaboration with domain experts. In the restaurant industry, this need is particularly acute, as consumers seek personalized dining experiences that cater to their unique tastes and preferences. Effective recommender systems can assist restaurants not only in suggesting menu items based on individual customer profiles but also in adapting to local trends, dietary restrictions, and seasonal ingredients. In this paper, we introduce CURSOR, a novel nocode platform designed to automatically develop customizable recommender systems for restaurants. CURSOR enables businesses to design and deploy tailored systems without the need to hire specialized development teams. Our evaluation results demonstrate that CURSOR reduces development time, lowers costs, and enhances system performance for restaurants. The output from CURSOR enhances customer experience by providing personalized suggestions, which in turn increases satisfaction and encourages purchases.
لیست مقالات
لیست مقالات بایگانی شده
Vi-Net: A Deep Violent Flow Network for Violence Detection in Video Sequences
Tahereh Zarrat Ehsan - Seyed Mehdi Mohtavipour
A Nano-based High-Speed QCA circuit for Information Security with Image Masking
Saeid Seyedi - Hatam Abdoli
بررسی روش یادگیری انتقالی جهت پیشبینی پیوند
علی روحانی فر - کمال میرزایی بدرآبادی
UltraLearn: Next-Generation CyberSecurity Learning Platform
Saeed Raisi - Saeid Ghasemshirazi - Ghazaleh Shirvani
Improving hypergraph attention and hypergraph convolution networks
Mustafa Mohammadi Gharasuie - Mahmood Shabankhah - Ali Kamandi
An Improved Image Classification Based In Feature Extraction From Convolutional Neural Network: Application To Flower Classification
Faeze Sadati - Dr Behrooz Rezaie
ارائه یک الگوریتم سلسله مراتبی جهت تشخیص نفوذ در شبکه های کامپیوتری
دکتر باقر رحیم پور کامی - سیدمحمد سیدی برشی باقر رحیم پور کامی - سیدمحمد سیدی برشی -
Improving Drug-Target Interaction Prediction Using Enhanced Feature Selection
Maryam Taheri - Mohammad Reza Keyvanpour - Mohadeseh Saadat Mousavi
Improving Training Stability in Variational Autoencoders Through the Integration of Score Matching Loss
Amirreza Mokhtari Rad - Pouya Ardehkhani - Hormehr Alborzi
Presentation of a New Decoder Based on Quantum Cellular Automata Technology Along with an Analysis of Energy Consumption
- - -
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2