0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Statistical Disorder Parameters Computing For Hyperspectral Image Anomaly Detection
نویسندگان :
Maryam Imani
1
1- دانشگاه تربیت مدرس
کلمات کلیدی :
hyperspectral, anomaly detection, entropy, anisotropy
چکیده :
Two statistical disorder parameters are defined for hyperspectral anomaly detection in this paper. While the background information is usually located in principal components of the hyperspectral data containing the most energy, the low variance components contain anomaly or noise signals. Two introduced parameters are computed based on the principal components. The first parameter called as entropy contains the randomness value of the spectral measurements while the second parameter called as anisotropy contains the relative importance of the consecutive components of the hyperspectral image. The extracted features can be given to any arbitrary anomaly detector. The experimental results show that feeding entropy and anisotropy features to the RX detector provides a significant improvement in hyperspectral anomaly detection.
لیست مقالات
لیست مقالات بایگانی شده
Improved Weighting in the Automated Texts Classification using Fuzzy Method
Hamidreza Sadrarhami - S. Mohammadali Zanjani - Ghazanfar Shahgholian
Predictive Maintenance using LSTM and Adaptive Windowing
Aien Ghanbari Adivi - Behrouz Shahgholi Ghahfarokhi
Optimal selection of seed nodes by reducing the influence of common nodes in the influence maximization problem
Farzaneh Kazemzadeh - Ali Asghar Safaei - Mitra Mirzarezaee
Data Analysis to Reduce Electrical Power Plants
Amirali Sahraei - Jamshid Shanbehzadeh
سیستم تشخیص نفوذ مبتنی برشبکه عصبی کانولوشن برای تشخیص حمله انکارسرویس در اینترنت وسایل نقلیه
زهرا جانفدا - سید امین حسینی سنو
Persian deaf sign language recognition system using deep learning
Mohammad Ebrahimi
LuckyAgent2022: A Stop-Learning Multi-Armed Bandit Automated Negotiating Agent
Arash Ebrahimnezhad - Faria Nassiri-Mofakham
NFV-Based Distributed Service Function Chaining with Imperfect Information
Mahsa Alikhani - Marzieh Sheikhi - Dr Vesal Hakami
پیشبینی بازار فارکس با استفاده از نمودار شمعی و شبکهی عصبی GRU
محمدرضا نوروزی - مریم مومنی
A qualitative spoofing detection system based on LSTMs for IoMT
Iman Jafarian - Amirmasoud Sepehrian - Siavash Khorsandi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1