0% Complete
English
صفحه اصلی
/
یازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Classification and Evaluation of Privacy Preserving Data Mining Methods
نویسندگان :
Negar Nasiri
1
Mohammadreza Keyvanpour
2
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
کلمات کلیدی :
Information, Privacy, Data Mining, Privacy preserving Data Mining, PPDM
چکیده :
Abstract— In the recently age, the volume of information is growing exponentially. This data can be used in various fields such as business, healthcare, cyber security, etc. Extracting useful knowledge from raw information is an important process. But the challenge in this process is the sensitivity of this information, which has made owners reluctant to share their information. This has led the study of the privacy of data in data mining to be a hot topic today. In this paper, an attempt is made to provide a framework for qualitative analysis of methods. This qualitative framework consists of three main sections: a comprehensive classification of proposed methods, proposed evaluation criteria and their qualitative evaluation. Our main purpose of presenting this framework is 1) systematic introduction of the most important methods of privacy preserving in data mining 2) creating a suitable platform for qualitative comparison of these methods 3) providing the possibility of selecting methods appropriate to the needs of application areas 4) systematic introduction of points Weakness of existing methods as a prerequisite for improving methods of PPDM.
لیست مقالات
لیست مقالات بایگانی شده
Identifying Children's Personality Styles through Drawing Analysis using Machine Learning
Maedeh Mosharraf - Faezeh Banabazi
سیستم پیشنهاددهنده غذای سالم با استفاده از داده کاوی عادت های تغذیه ای کاربران
محمد عباسی - مریم حسینی پزوه - محمدرضا شمس
Design and modeling of a waiter robot
Amin Mohammadnejad - Hami Tourajizadeh
Persian deaf sign language recognition system using deep learning
Mohammad Ebrahimi
Human Resource Allocation to the Credit Requirement Process, A Process Mining Approach
Omid Mahdi Ebadati - Mohammad Mehrabioun - Shokoofeh Sadat Hosseini
Statistical Disorder Parameters Computing For Hyperspectral Image Anomaly Detection
Dr Maryam Imani
شناسایی کمپلکس های پروتئینی با استفاده از داده های زیستی و خوشه بندی فازی
مریم مولی وردیخانی - دکتر سعید جلیلی مریم مولی وردیخانی - سعید جلیلی -
An Improved Image Classification Based In Feature Extraction From Convolutional Neural Network: Application To Flower Classification
Faeze Sadati - Dr Behrooz Rezaie
A perceptual loss for screen content image super-resolution
Hossein Sekhavaty-Moghadam - Marzieh Hosseinkhani - Dr Azadeh Mansouri
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
Seyed Amir Mousavi - Mostafa Sadeghi - Mohammad Sadeq Sirjani
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2